Modélisation moléculaire de fluides complexes

Yves Lansac

LEMA Université de Tours

Methodology

- Molecular dynamics and Monte Carlo simulation of
- atomistic (chemically realistic) and coarse-grained (idealized) molecular models
- Poor man's ab initio molecular dynamics
 - Classical interaction potentials for atomistic simulation derived from ab initio quantum chemistry
- Mean field theory
 - Models single-molecule distribution function
 - Condensed phase environment represented by mean field potential
 - Facilitates rapid pre-synthesis evaluation of materials and modeling of FTIR and NMR data
- Free energy computation
 - Thermodynamic integration
 - Gibbs-Duhem integration
 - Umbrella sampling
 - Histogram reweighting
- Continuum modeling (partial differential equations)

Idealized modeling:

Phase Behavior of bent-core molecules

Phase diagram of a simple hard dimer model

Symmetry breaking with bent-core molecule Image: the symmetry breaking with achiral molecules

Motivation

Achiral banana (bent-core) molecules exhibit spontaneous polar and chiral ordering

What is the minimal molecular model that captures polar and/or chiral symmetry breaking?

Are excluded volume interactions sufficient?

Very few materials exhibit both polar smectic and nematic phases

What is the degree of molecular bending compatible with a nematic ordering?

The overwhelming majority of banana materials have an antiferroelectric ground state

Is there some fundamental mechanism that favors antipolar ordering in banana phases?

Polar and nonpolar smectic A phases

Atomistic modeling:

Photo-controlled nanophase segregation in smectic liquid crystal

Experiment

A novel photomechanical effect has recently been observed in which a reversible increase in the layer spacing of a SmA solvent (8CB) is found to accompany the *trans-cis* isomerization of a photolabile solute (7AB) under UV illumination.

We have carried large-scale simulation of this system in order to investigate the microscopic origin of this effect.

Details of simulations

We carried out NPT molecular dynamics simulations of systems containing 100 8CB molecules and 12 7AB molecules (11% molar concentration) at P = 1 atm and T = 290 K.

Two simulations were performed: one with all 7AB molecules in the trans configuration (the trans-7AB simulation), and another with all 7AB molecules in the cis configuration (the cis-7AB simulation). The total duration of each simulation was 6.06 ns.

A SmA2-like initial condition was used, with 7AB molecules placed within smectic layers and oriented along the layer normal.

Both systems were simulated using periodic boundary conditions, with long-range electrostatics interactions explicitly included using the particle-mesh Ewald (PME) method.

Density Profiles for 8CB/7AB Mixtures

Projets

- Matériaux magnétiques / supraconducteurs
 - Simulations atomistiques (ab initio, MD, MC, réseaux)
 - Modèles idéalisés (MD systèmes dissipatifs forcés)
- Fusion solide-liquide à 2D (modèles élastiques)
- Colloides (MD/MC équilibre et forcé)
- Polyelectrolytes en géométries confinées (MD/coarse-grained)