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Methodology

ofMoIecuIar dynamics and Monte Carlo simulation
o

atomistic (chemically realistic) and coarse-grained
(idealized) molecular models
¢ Poor man’s ab initio molecular dynamics
— Classical interaction potentials for atomistic simulation derived
from ab initio quantum chemistry

¢ Mean field theory
— Models single-molecule distribution function
— Condensed phase environment represented by mean field potential
— Facilitates rapid pre-synthesis evaluation of materials and modeling
of FTIR and NMR data

¢ Free energy computation
— Thermodynamic integration
— Gibbs-Duhem integration
— Umbrella sampling
— Histogram reweighting

¢ Continuum modeling (partial differential equations)



What are liquid crystals?
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nematic

smectic A

smectic C

Molecular orientational
order (MOO)
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1d positional order

MOO +
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Idealized modeling:

Phase Behavior of bent-core
molecules

® Phase diagram of a simple hard dimer model



Symmetry breaking with bent-core molecule
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Spontaneous chiral symmetry breaking with achiral molecules




Motivation

Achiral banana (bent-core) molecules exhibit spontaneous polar
and chiral ordering

What is the minimal molecular model that captures
polar and/or chiral symmetry breaking?

Are excluded volume interactions sufficient?

Very few materials exhibit both polar smectic and nematic phases

What is the degree of molecular bending compatible
with a nematic ordering?

The overwhelming majority of banana materials have an
antiferroelectric ground state

Is there some fundamental mechanism that favors
antipolar ordering in banana phases?



Model

Hard spherocylinder dimers

Three-parameter model:

length / breadth ratio: L / D

opening angle: ¥
e

reduced density or pressure: p* =p v,
orP*=pB Py,

L

We study the phase diagram as a function vl
of pressure and opening angle for L/ D =5 D
by NPT Monte Carlo simulation



Hard-core spherocylinders

Phase transition driven only by entropic effects, at a given
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Phase diagram for L/D = 5
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No chiral (tilted) smectic
phase found.



Order parameters

order parameters
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Final configurations for ¥ = 90°

Isotropic SmAP Crystal
px=1 Px=7 P* =15



= 165°

Final configurations for ¥




Polar and nonpolar smectic A phases

SmAP (in-layer polarity) SmA (no polarity)
P=165 Y=172.5°



Nature of the SmAP phase

Free energy calculation using umbrella sampling

Y= [20°at P* = 7.5 (middle of the SmAP phase)
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Entropic effects stabilize the antipolar SmAP phase



Sawtooth Model
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Atomistic modeling:

Photo-controlled nanophase
segregation in smectic liquid crystal



Experiment

A novel photomechanical effect has recently been observed
in which a reversible increase in the layer spacing of a SmA
solvent (8CB) is found to accompany the trans-cis
isomerization of a photolabile solute (7AB) under UV
illumination.

We have carried large-scale simulation of this system in order
to investigate the microscopic origin of this effect.



8CB/7AB mixture
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Details of simulations

We carried out NPT molecular dynamics simulations of systems
containing 100 8CB molecules and 12 7AB molecules (11% molar
concentration) at P =1 atm and T =290 K.

Two simulations were performed: one with all 7AB molecules in the
trans configuration (the trans-7AB simulation), and another with all
7AB molecules in the cis configuration (the cis-7AB simulation).
The total duration of each simulation was 6.06 ns.

A SmAZ2-like initial condition was used, with 7AB molecules placed
within smectic layers and oriented along the layer normal.

Both systems were simulated using periodic boundary conditions,
with long-range electrostatics interactions explicitly included using
the particle-mesh Ewald (PME) method.



Simulations of 8CB/7AB mixtures

Smectic layer spacing vs. time
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Snapshots from trans7AB simulation

initial final

trans7AB exhibits intralamellar segregation



Snapshots from cis7AB simulation

initial final

cis7AB exhibits interlamellar segregation



Density Profiles for 8CB/7AB Mixtures
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Projets

* Matériaux magnétiques / supraconducteurs
- Simulations atomistiques (ab initio, MD, MC, réseaux)
- Modg¢les idéalisés (MD systémes dissipatifs forcés)

* Fusion solide-liquide a 2D (modg¢les €lastiques)

* Colloides (MD/MC équilibre et forcé)

* Polyelectrolytes en géométries confinées (MD/coarse-grained)



