

9^e journée CaSciModOT 11 décembre 2008 Orléans

Simulation des détonations dans le milieu gazeux sur des plateformes de calcul parallèle

Dmitry DAVIDENKO

I. Introduction

II. Modèle globale de détonation

III. Modèle 1D de détonation stationnaire

IV. Modèle 2D de détonation non stationnaire

V. Conclusions et perspectives

I. Introduction

II. Modèle globale de détonation

III. Modèle 1D de détonation stationnaire

IV. Modèle 2D de détonation non stationnaire

V. Conclusions et perspectives

Détonation : Événement dangereux

- **Explosions accidentelles dans :**
 - ✤ les usines
 - 🄄 les dépôts
 - ✤ les mines
 - ✤ le transport

- Utilisation malintentionnée d'armes et d'explosifs
- Défaillance des systèmes à combustion

Détonation : Applications pratiques

- Armes
- **Travaux miniers**

- **Démolition**
- Procédés industriels

Propulsion

Mélange H₂-N₂O

Protoxyde d'azote (N₂O)

- Stabilité et basse pression vapeur (facilité de stockage)
- Solution Meilleur oxydant que l'air
- Applications : médicine, pharmacologie, aérosols, moteurs automobile, moteurs fusée
- Hydrogène Protoxyde d'azote
 - Scheme Propergols

- Point critique : 309.6 K 7.245 MPa Point de fusion : 182 K 0 150 200 250 300 Température, K
- ♦ Mélange détonant ⇒ Risque industriel pour :
 - production de semi-conducteur du silane (Si H₄)
 - stockage de déchets nucléaires

Régimes de propagation de la flamme

I. Introduction

II. Modèle globale de détonation

III. Modèle 1D de détonation stationnaire

IV. Modèle 2D de détonation non stationnaire

V. Conclusions et perspectives

Modèle global de détonation

Hypothèses Écoulement est : stationnaire, 1D, sans pertes

Quantités conservées entre les sections : Mélange « m » – Choc « s » – Produits « p »

- **Débit massique** ρV
- **Contract Set 5** Impulsion $\rho V^2 + P$

Constant of a set o

Modèle global de détonation

Modèle thermodynamique du fluide

Équation d'état du gaz parfait

 $P = \rho R T$

Constante du gaz

$$R = \sum_{s} R_{s} Y_{s} \qquad R_{s} = R_{u} / W_{s}$$

C Enthalpie

$$h(T, Y_s) = \sum_{s} \left[h_s^o + \int_{T^o}^T c_{P_s}(T) dT \right]$$

Modèle global de détonation

Équilibre chimique

Réactions de dissociation pour H₂, N₂O, O₂, H₂O, OH, N₂

$H_2 \Leftrightarrow 2H$	$N_2 O \Leftrightarrow 2N + O$
$O_2 \Leftrightarrow 2O$	$H_2O \Leftrightarrow 2H + O$
$N_2 \Leftrightarrow 2N$	$OH \Leftrightarrow O + H$

Expression généralisée $H_n O_m N_l \Leftrightarrow nH + mO + lN$

Conservation de la matière $P = \sum_{s} p_{s} \qquad \frac{Y_{\rm H}}{A_{\rm H}} \frac{A_{\rm O}}{Y_{\rm O}} = \frac{\sum_{s} n_{s} N_{s}}{\sum_{s} m_{s} N_{s}} \qquad \frac{Y_{\rm N}}{A_{\rm N}} \frac{A_{\rm O}}{Y_{\rm O}} = \frac{\sum_{s} l_{s} N_{s}}{\sum_{s} m_{s} N_{s}}$ Loi d'action de masse

$$K_{C_s} = \frac{C_{\mathrm{H}}^{n_s} C_{\mathrm{O}}^{m_s} C_{\mathrm{N}}^{l_s}}{C_s} \qquad C_s = \rho \frac{Y_s}{W_s}$$

Exemple : Détonation H₂-N₂O-Ar

Conditions initiales

- **Pression**
- **C** Température
- Composition volumiques

10,2 kPa (0,101 atm) 297 K (24°C) 30% H₂ + 30% N₂O + 40% Ar

Résultats

Nombre de Mach des produits = f (vitesse de propagation)

Conditions pour la détonation CJ

	Mélange	Choc	Produits
M	5,58	0,388	1
$P/P_{\rm m}$	1	37,5	20,9
<i>T</i> (K)	297	1860	3140

Limitations du modèle global

- Approche globale d'équilibre chimique permet de calculer :
 - états derrière le choc et dans les produits de combustion
 - **vitesse théorique de propagation**
- Pour étudier la structure d'une détonation, il faut adopter l'approche de cinétique chimique à taux de réaction finis

- I. Introduction
- II. Modèle globale de détonation

III. Modèle 1D de détonation stationnaire

IV. Modèle 2D de détonation non stationnaire

V. Conclusions et perspectives

Modèle cinétique chimique

Réaction d'échange $\sum_{s} \alpha_{s} A_{s} \Leftrightarrow \sum_{s} \beta_{s} A_{s}$ $\omega_{f} = k_{f} \prod_{s} C_{s}^{\alpha'_{s}} \qquad \omega_{b} = k_{b} \prod_{s} C_{s}^{\beta'_{s}}$

Constante de vitesse (k_f, k_b) Loi d'Arrhenius

$$k = A T^{b} \exp\left(-\frac{E}{R_{\rm u} T}\right)$$

Réaction de dissociation-recombinaison

$$\sum_{s} \alpha_{s} A_{s} + M \Leftrightarrow \sum_{s} \beta_{s} A_{s} + M$$
$$\omega_{f} = k_{f} C_{M} \prod_{s} C_{s}^{\alpha'_{s}} \qquad \omega_{b} = k_{b} C_{M} \prod_{s} C_{s}^{\beta'_{s}}$$

Taux de production d'une espèce chimique

$$\dot{m}_{s} = W_{s} \sum_{r=1}^{N_{r}} \left(\beta_{sr} - \alpha_{sr} \right) \left(\omega_{\mathrm{f}r} - \omega_{\mathrm{b}r} \right)$$

Mecanisme reactionnel pour H₂, N₂O, H₂O, N₂, H, O, OH

$N_{2}O(+M)$	\Leftrightarrow	$N_2 + O(+M)$
$O + H_2$	⇔	H + OH
$N_2O + H$	⇔	$N_2 + OH$
$\overline{OH} + H_2$	⇔	$H_2O + H$
OH + H + M	⇔	$H_2 O + M$

Modèle Zeldovich – von Neumann - Döring

Équations d'Euler 1D stationnaires

- Continuité $\frac{\mathrm{d}\rho V}{\mathrm{d}x} = 0$
- Quantité de mouvement
 Espèces chimiques

$$\rho V \frac{\mathrm{d}V}{\mathrm{d}x} + \frac{\mathrm{d}P}{\mathrm{d}x} = 0$$

- **Contraction Enthalpie totale** $\rho V \left(\frac{\mathrm{d} h}{\mathrm{d} x} + V \frac{\mathrm{d} V}{\mathrm{d} x} \right) = 0$

$$\rho V \frac{\mathrm{d} Y_s}{\mathrm{d} x} = \dot{m}_s$$

Méthode de résolution

- Transformation en système d'EDO
- **Utilisation d'un intégrateur pour EDO raides**

Structure de la détonation stationnaire

Résultats ZND pour la détonation Chapman-Jouguet Conditions initiales : 30% H₂ + 30% N₂O + 40% Ar en volume $P_{\rm m} = 10,2$ kPa, $T_{\rm m} = 297$ K, $D_{\rm CJ} = 1907$ m/s

Limitations du modèle ZND

- L'application du modèle ZND est limitée à :
 * régime stationnaire (CJ ou surpressé)
 * configuration 1D
- Pour étudier la propagation libre d'une détonation, il faut adopter l'approche non stationnaire

- I. Introduction
- II. Modèle globale de détonation
- **III. Modèle 1D de détonation stationnaire**

IV. Modèle 2D de détonation non stationnaire

V. Conclusions et perspectives

Modèle de détonation non stationnaire

Équations d'Euler 2D

Continuité

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_j}{\partial x_j} = 0$$

Quantité de mouvement
Espèces chimiques

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} + \frac{\partial P}{\partial x_i} = 0$$

$$\begin{array}{c} \textcircled{\bullet} \quad \acute{\mathbf{E}} \text{nergie totale} \\ \frac{\partial \left(e + \frac{1}{2}u_i \, u_i\right)}{\partial t} + \frac{\partial \rho \, u_j \left(h + \frac{1}{2}u_i \, u_i\right)}{\partial x_j} = 0 \end{array}$$

$$\frac{\partial \rho Y_s}{\partial t} + \frac{\partial \rho u_j Y_s}{\partial x_j} = \dot{m}_s$$

Méthode de résolution

- Approximation spatiale des flux : schéma WENO d'ordre 5
- **Intégration temporelle : RK additif semi-implicite d'ordre 2**

Code de calcul

Développeurs : Davidenko (ICARE), Kudryavtsev (ITAM)

Caractéristiques principales

Solveur Euler 1D et 2D pour les écoulements compressibles réactifs

b Différences finies en formulation conservative

Solution Maillage structuré orthogonal

Parallélisation par décomposition du domaine

Code de calcul

Algorithme global

- ✤ Initialisation de la solution
- Boucle en temps

Series Pas de temps limité par CFL + réduction MPI

Use Stration RK

- Subscription des conditions aux limites
 - frontières physiques
 - frontières internes (échanges MPI)
- Scalcul des dérivés des flux (WENO)
- Scalcul des termes sources (modèle chimique)
- ✤ Mise à jour de la solution
- Seconstruction du maillage et redistribution de la solution (MPI)

Principe de décomposition du domaine

Domaine de calcul

cellule interne en amont – conditions CJ en aval

Conditions d'entrée

 $P_{\rm m} = 10,2$ kPa, $T_{\rm m} = 297$ K, 30% H2 + 30% N2O + 40% Ar en volume

Exemple : détonation 2D

Visualisation (gradient de densité)

« Feuille de suie » (pression max)

« Feuille de suie » (symétrie par réflexion)

Exemple : détonation 2D

Pression statique (Pa)

Température statique (K)

Fraction massique H₂O

Cellules de détonation

Feuille de suie numérique

Feuille de suie expérimentale

x, m

x, cm

Front de la détonation

Visualisation expérimentale J.

Austin, Caltech, 2003 $H_2 - N_2O - 1.64 N_2$

- Structures similaires dans la simulation et dans l'expérience
- **Tronts irréguliers avec des poches de gaz non brûlé**

- I. Introduction
- II. Modèle globale de détonation
- **III. Modèle 1D de détonation stationnaire**
- **IV. Modèle 2D de détonation non stationnaire**
- V. Conclusions et perspectives

Conclusions et perspectives

- Simulation de la détonation nécessite des plateformes parallèles
 - **Use Sectors d'échelles en configuration multidimensionnelle**
 - ✤ Résolution fine en temps et en espace
 - Schémas numériques d'ordre élevé
 - **Modèles thermochimiques détaillés**
- Amélioration d'outils de simulation
 - Section d'une plate-forme de calcul scientifique à l'ICARE
 - Application des techniques de tabulation pour le traitement de systèmes réactifs complexes
 - Intégration de techniques d'adaptation dynamique de maillage (Adaptive Mesh Refinement)