

Real-Time Pulsar Timing Signal Processing on GPUs

Plan : Pulsar Timing Instrumentations

LPC2E, CNRS Orléans - FRANCE -Ismaël Cognard, Gilles Theureau, Grégory Desvignes, Dalal Ait-Allal

INSU

11ème journée Cascimodot, 11 dec, 2009, Orléans

Real-time Pulsar Timing signal processing on GPUs

Pulsars

Five stable pulsars timed at Nançay

Pulsar timing

a large radiotelescope : Nançay

a 100m dish equivalent telescope 2 receivers 1.1-1.8 and 1.7-3.5GHz Tsys 35K efficiency 1.4K.Jy

dedispersion a bit of history...

988	swept LO (co 8MHz)
	$\sim 0.5 \mu s$ uncertainty on PSR B1937+21

- 1996 filterbank NBPP (inco 120MHz) Navy Berkeley Pulsar Processor
- 2004 coherent dedispersor BON (co 64-128MHz) Berkeley Orleans Nancay
- 2008 GPU coherent BON (co 128MHz)

swept LO

Coherent dedispersion

dispersion by the ionized ISM is a phase-only filter

coherent dedispersion apply an inverse transfer function in the frequency domain FFT + multiply + FFT⁻¹ (+overlap)

BON : a coherent dedispersion with a cluster of CPUs

64 bi-Athlon 1.2GHz Gigabit fiber network installed in 2001

BON : architecture

Upgrade of the BON dedispersor

in 2008,

it was time to think about the **upgrade** of the 7 years old cluster and of the 4 years old instrumentation...

following preliminary tests by Paul Demorest, UC Berkeley, in 2007, we tried different types of processors in addition to standard CPUs : the GPUs with the Nvidia 8800GTX for example (G80 family)

FFT tests of different engines

so, we tested two types of processors in addition to standard CPUs : the IBM Cell (PlayStation3) and the Nvidia 8800GTX

a GPU-based pulsar instrumentation developped at Nançay

 motherboard Supermicro X7DWA-N
 CPUs quad-core Xeon E5420 (2.5GHz, 12MB cache)
 GB main memory
 PCI-CDa DMA interface (for EDT)
 GeForce 8800GTX and water cooling

+ CUDA librairies + CUFFT

this 5k€ system is able to remove the **dispersion effect** of the interstellar medium directly on recorded voltages over a 128MHz bandwidth (the data rate is 2x 2Gbs)

Code (excerpt)

// -- Allocate and transfer of chirp function -cudaMalloc((void**)&chirp_device, mem_chirp);
cudaMemcpy(chirp device, chirp, mem chirp, cudaMemcpyHostToDevice);

// -- CUFFT plan -CUFFT_SAFE_CALL(cufftPlan1d(&plan,obs_params.fft len,CUFFT C2C,2*NFFTinSend));

// -- Transfer data -cudaMemcpyAsync(tbuf_device, tbuf_host, mem_tbuf, cudaMemcpyHostToDevice,0);
CUDA SAFE CALL(cudaThreadSynchronize());

// -- Forward FFT -CUFFT_SAFE_CALL(cufftExecC2C(plan,fftbuf_device,fftbuf_device,CUFFT_FORWARD));

// -- Chirp filter multiply -vec_mult_complex<<<nb_mult,512>>>
 ((float2 *)&fftbuf_device[i*obs_params.fft_len],
 (float2 *)&chirp_device[obs_params.fft_len*freq_chan],
 obs params.fft_len, 2*NFFTinSend);

// -- Inverse FFT -CUFFT_SAFE_CALL(cufftExecC2C(plan,fftbuf_device,fftbuf_device,CUFFT_INVERSE));

Code (detect_4pol kernel)

```
/* Device function to compute squares, cross-products in-place
* Inputs:
* vx = (X I, X Q, ...) n times
* vy = (Y I, Y Q, ...) n times
* n = number of data points
* Outputs:
* vx = (XX, YY, \dots) n times
* vv = (Re(X*Y), Im(X*Y), ...) n times
*/
 global void detect 4pol(float2 *vx, float2 *vy, size t n) {
    const int nt = blockDim.x * gridDim.x;
    const int tid = blockIdx.x * blockDim.x + threadIdx.x;
    float2 pp, xp;
    for (int i=tid; i<n; i+=nt) {</pre>
       pp.x = vx[i].x*vx[i].x + vx[i].y*vx[i].y; // XX
       pp.y = vy[i].x*vy[i].x + vy[i].y*vy[i].y; // YY
       xp.x = vx[i].x*vy[i].x + vx[i].y*vy[i].y; // Re(X*Y)
       xp.y = vx[i].x*vy[i].y - vx[i].y*vy[i].x; // Im(X*Y)
       qq = [i]xv
       vy[i] = xp;
    }
```

the data path

INPUT at 2Gb/s from Serendip5 spectrometer

Apr 2008, prototype without water cooling

probably still the only ones to do GPU dedispersion...

the **next coherent pulsar dedispersor** at Nançay will have a 400MHz bandwith

iBOB tests conducted on Sept 2008 with P.McMahon

Early 2010 : a 400MHz coherent pulsar dedispersor

$\sim 2012\text{--}2013$

direct sampling of the receivers outputs ? UNIBOARD collaboration with PRISME Univ Orléans (PhD)

(http://www.radionet-eu.org/uniboard)

Folding in the GPU

d Number of blocks : 32 5 Time (s) 6.05 100 0 Pulsar period (ms) 0.15 Number of blocks : 128 Ö Time (s) 0.05

C

1

10

100

Pulsar period (ms)

16. 32

CPU

1000

128

512

CPU _

1000

folding

calculate expected rotational phase for each sample integrate in a 2k profile array and count normalize

Grégory Desvignes wrote kernel code and performed tests for different kernel configurations (numbers of threads and blocks)

Folding in the GPU

the kernel code to do the **folding** within the GPU was tested... successfully !

we are now working on the **re-ordering** of data received from a PFB (a matrix transposition)

Conclusion

we guess GPUs are a good alternative to do coherent dedispersion of pulsars

they are inexpensive at ~300€ each

the GT200 generation is able to process more than 100MHz bw each

properly coded, GPUs can do all the job : re-ordering data, dedispersing, folding (maybe doing everything for bw 100MHz)

for other applications, have a look to http://www.nvidia.fr/object/cuda_home_fr.html

