12^{ème} journée Cascimodot, 1^{er} juillet 2010, Tours

PEST (Parameter ESTimation) et SENSAN (SENSitivity ANalaysis)

Logiciels de calage et d'analyse de sensibilité

B.Cheviron - bruno.cheviron@gmail.com Université Paris VI

SENSAN et PEST

SENSAN \rightarrow calcul direct

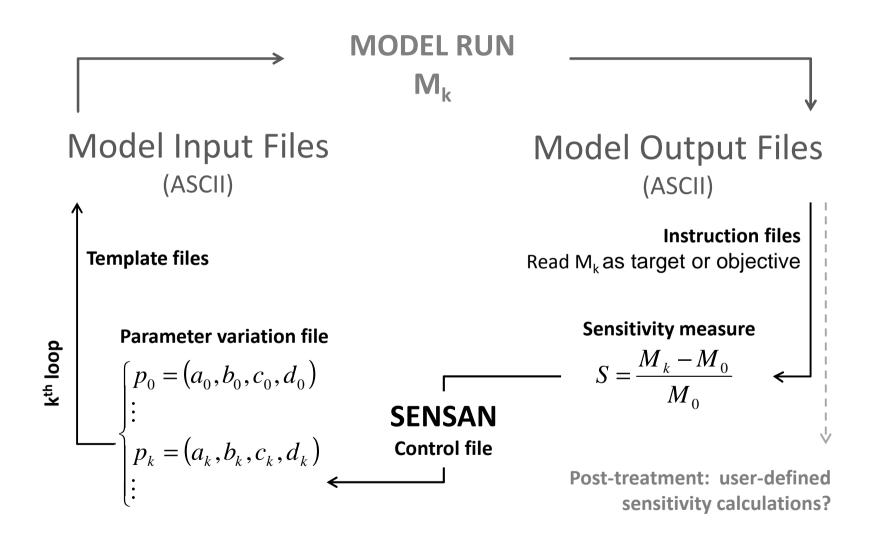
- > Impose au modèle les jeux de paramètres choisis par l'utilisateur
- > Enregistre les variations des sorties du modèle
- > Permet les calculs de sensibilité de type var.sortie/var.entrée

$PEST \rightarrow calcul inverse$

- > L'utilisateur donne un jeu de paramètres de départ
- PEST ajuste les paramètres selon les observations disponibles
- ➤ Il s'agit de minimiser l'écart entre observations et prédictions

Manuel et addendum: Doherty (2004, 2008)

Schéma direct (SENSAN)



Exemple (1) avec SENSAN

Contamination de la nappe par un pesticide

Paramètres

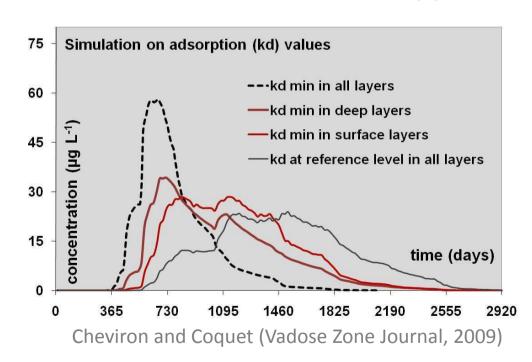
$$p = (\cdots, kd_S, kd_P, \cdots)$$
 Adsorption en en surface profondeur

Parameter variation file

Valeurs associées aux tests des paramètres d'adsorption:

- un à la fois (kd_s ou kd_p)
- ou bien les deux à la fois (kd_s et kd_p)

Concentration dans la nappe



Exemple (2) avec SENSAN

Sensibilités comparées de quatre modèles d'érosion

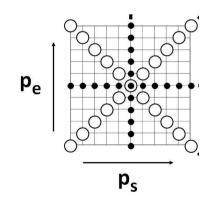
Paramètres

$$p = \left(P, R, p_s, p_e\right)$$
 HYDROLOGIE EROSION Pluie Pente Conditions de Ruissellement Erodibilité

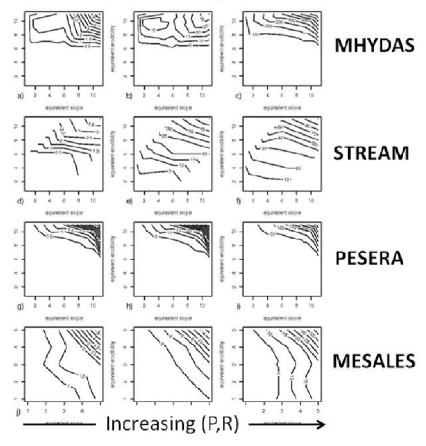
Parameter variation file

➤ Valeurs des paramètres associées à des trajectoires choisies dans le plan (p_s,p_e)

➤ Trajectoires répétées pour différentes valeurs de (P,R)

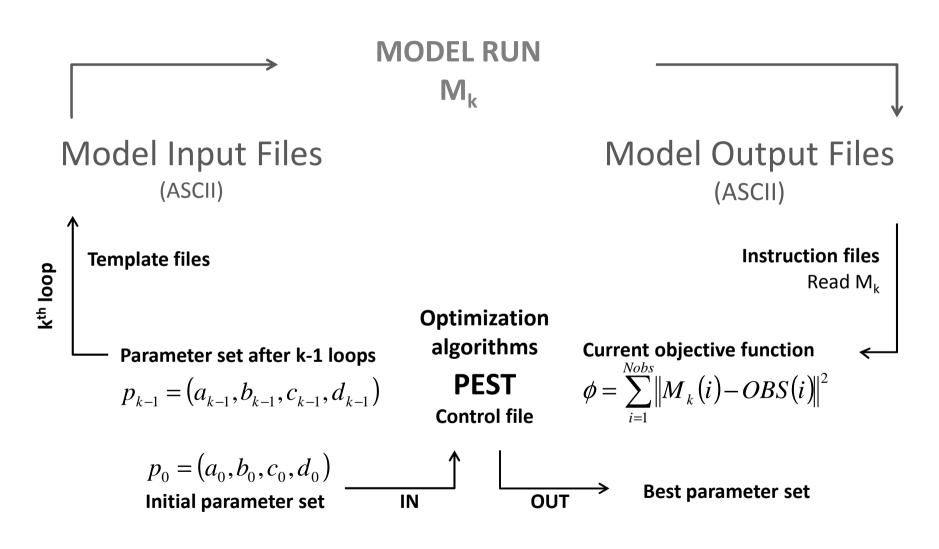


Isovaleurs de « perte en terre »



Cheviron et al. (Water Resources Research, 2010)

Schéma inverse (PEST)



Exemple avec PEST

Calage d'une loi puissance entre débit et concentration

Relation à caler

 $c = aQ^b$ Débit de la \downarrow rivière Concentration en sédiments

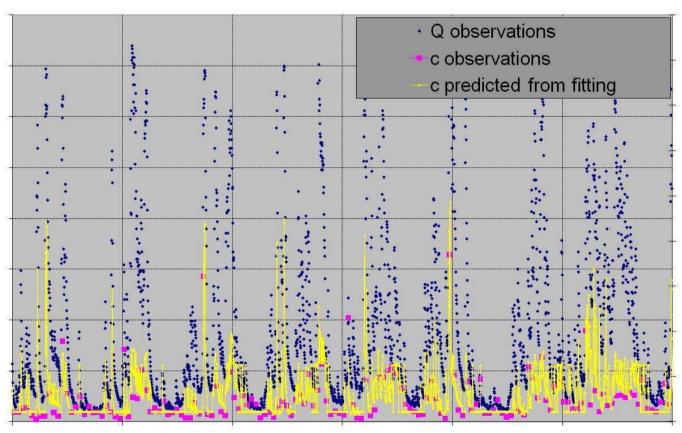
Paramètres

a: préfacteur

b: exposant

Observations

Une série de mesures de Q et de c sur une longue période, à intervalles irréguliers



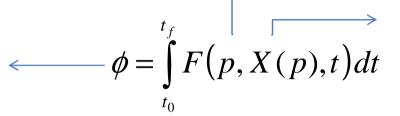
Delmas et al. (Hydrological Processes, 2010, submitted)

La fonction objectif ϕ

Lien formel entre problème direct et problème inverse

FORME GENERALE DE ϕ

Souvent scalaire mais peut être vectorielle



Vecteur des paramètres Vecteur des variables d'état

ANALYSE: SENSAN

 ϕ est du type « PREDICTION »

Analyse de sensibilité Analyse d'incertitude Etudier l'influence des modifications de p

 ϕ est du type « FONCTION COUT »

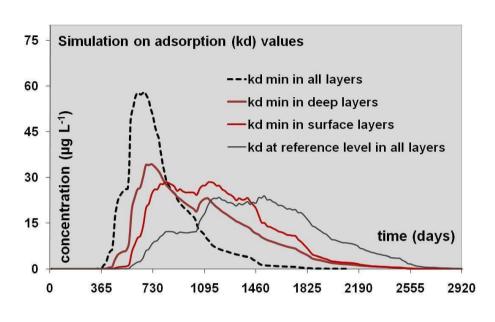
CONTRÔLE/OPTIMISATION: PEST

Estimation de paramètres Assimilation de données Chercher l'optimum de p pour des contraintes données

Point-clefs

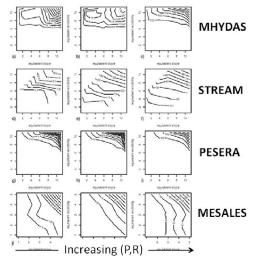
1/ Définition ad hoc de ϕ par l'utilisateur 2/ Calcul des variations de ϕ avec p

Fonctions *\phi* ad hoc pour SENSAN



Dans l'analyse, ϕ a intégré la concentration au pic et le maximum en moyenne glissante annuelle

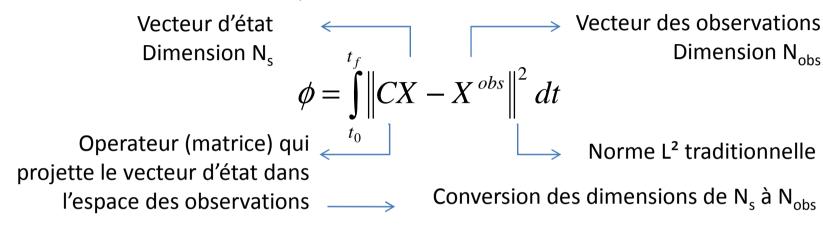
La définition de ϕ a intégré les éléments jugés pertinents pour décrire la sensibilité du modèle



Dans cet exemple, c'est la perte en sol cumulée qui a été retenue comme cible de l'analyse, pas son évolution dans le temps.

Fonctions *\phi* ad hoc pour PEST

FORME CLASSIQUE DE ϕ



Selon le contexte...

(éventuellement avec un terme additif dans φ)

Calcul des variations de ϕ avec p

Petit aperçu des algorithmes d'optimisation de PEST

Variations représentées par le gradient de ϕ

Gradient
$$\nabla \phi = \left(\frac{\partial \phi}{\partial p_1}, \cdots, \frac{\partial \phi}{\partial p_k}, \cdots, \frac{\partial \phi}{\partial p_{Np}}\right)$$
 Le vecteur a Np composantes, autant que de paramètres par rapport à p_k dans le problème

Gradient estimé par la méthode des perturbations

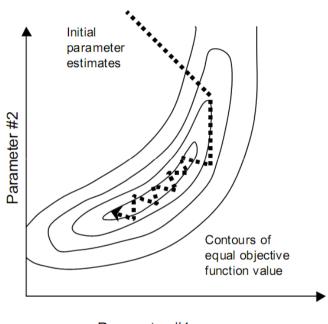
Pour la k^{ième} composante
$$\left[\frac{\partial \phi}{\partial p_{\scriptscriptstyle k}} \right] \approx \frac{\phi(p_1, \cdots, p_{\scriptscriptstyle k} + \varepsilon, \cdots, p_{\scriptscriptstyle N_{\scriptscriptstyle p}}) - \phi(p)}{\varepsilon}$$

Perturbation, choix crucial: ε trop grand brise l'hypothèse de linéarité ε trop petit conduit à des erreurs d'arrondi

Ordre 1, DF progressive, mais PEST s'adapte tout seul du schéma centré à 3 pts au progressif à 2 pts

Convergence vers le minimum de ϕ

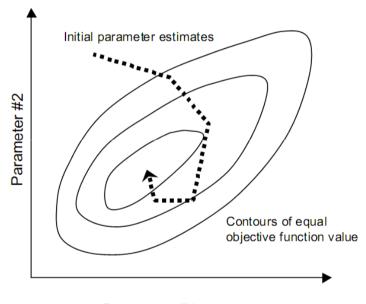
Le risque avec les algorithmes de descente de gradient



Parameter #1

Descente de gradient \rightarrow trajectoire orthogonale aux isovaleurs de ϕ et amplitude de l'ajustement non contrôlée \rightarrow « sauts » autour de la solution

PEST : algorithmes de Marquardt-Levenberg



Parameter #1

PEST agit sur la direction de la descente et sur l'amplitude des ajustements, ces réglages étant contrôlables par l'utilisateur.