

Simulations numériques de bio-molécules

Cliquez pour modifier le style des sous-titres du masque Université d'Orléans Centre de Biophysique Moléculaire – CNRS

Norbert Garnier

Auto-association du domaine transmembranaire du récepteur ErbB2/Neu sauvage et muté

Détermination de modèles structuraux pour l'auto-association

Mécanique moléculaire

Dynamique moléculaire dans le vide

- Mode d'association identique pour les formes sauvage et mutée
- ---- Association gauche des hélices
- Interface semblable pour
 les formes sauvage et mutée
- Présence de liaisons hydrogène intermonomère Glu-Glu

Dynamique moléculaire en présence d'un modèle d'environnement membranaire

- ---- Gain de réalisme biologique
- Puissance informatique croissante
- Taille des systèmes (20000 atomes) échelle de temps explorée (10 ns) temps de simulation (1000 hCPU)
- Association gauche des hélices
- Déformations ú

N-ter

Structure initiale

Proximité domaine transmembranaire - environnement

Couches d'eau

Cœur hydrophobe Glu

Proximité domaine transmembranaire - environnement

Glu

Interface dimérique

Matrice de distance: Coi(H1) - Coj(H2)

Interactions inter-hélices

Récepteurs tyrosine kinase Famille HER

Prédiction des modes d'association des domaines transmembranaires des hétérodimères ErbB1-4. Rôle des motifs de dimérisation de type GxxxG

Thermal unfolding of the *E. coli* HU protein: Structural insights from molecular dynamics simulations

The Escherichia coli HU protein

- > small dimeric protein (2x90 residues)
- > structure and dynamics of the bacterial DNA
- > 3 dimeric Gliguez pour modifier le style des sous-titres du masque homodimer HUc2, HUß2 heterodimer HUc8

X ray crystallography

Cp(J.K-1.mol-1)

Differential Scanning Calorimetry

Thermal denaturation profile

 $N2 \leftrightarrow 12 \leftrightarrow 2D$

Cliquez pour modifier le style des sous-titres du masque

T(K)

Circular Dichroism

I2 dimeric form with a lost of structural elements (α helix and β -sheet)

Goal of the work

- Study of the thermal denaturation of the HU protein
- What is the 3D structure of the I2 intermediate?

Why determining the 3D structure of 12?

> Formation of the heterodimer HU $\alpha\beta$ from the homodimers HU α 2 and HU β 2

Methods

Molecular dynamics simulation in explicit solvent at different temperatures

Analysis of the early steps of HU thermal unfolding process

AMBER program

NPT Cliquez pour modifier le Counter ions Na+ , ClParticule Mesh Ewald
Initial box dimensions:
80Å x 95Å x 80Å

Results

- 1 MD simulation
- ≻ T=310K
- > 25 ns time scale

 $C\alpha rmsd$ from the native structure

- > 58028 atoms
- > <water density>=0.991 g.cm-3
- > <pressure>=1. atm

Cliquez pour modifier le style des sous-titres du masque

Results

- 5 MD simulations:
- ≻ T=500K
- > different initial conditions
- > 5 ns time scale
- > 58028 atoms
- > <water density>=0.7087 g.cm-3
- > <pressure >=1 atm Cliquez pour modifier le style des sous-titres du masque

Carmsd from the native structure

Results

- 3 MD simulations:
- ≻ T=400K
- > different initial conditions
- > 10 ns time scale
- > 58028 atoms
- > <water density>=0.8893 g.cm-3

$C\alpha rmsd$ from the native structure

Conf1 = or \neq to Conf2

> <pressure>=1 atm Cliquez pour modifier le style des sous-titres du masque

Secondary structure content from the native structure(%)

Conformer		œHelix	(β-Sheet						
	MD1	MD2	MD3	MD1	MD2	MD3				
C1	86	82	93	96	84	96				
C2	87	82	74	78	94	80				
C3	67	89	62	74	72	74				
C4	(58)	88	61	(78)	84	60				
C5	BP	78	57	TF	80	68				
C6	53	82		52	82					
Cliquez pour modi	Cliquez pour modifier le style des sous-titres du masque									
C8	68	67		46	74					
C9	76			48						
C10	61			20						

C4 <u>12 (CD experim</u> MB) model for d

MD refinement of the I2 model

- 1 MD simulation
- ≻ T=310K
- > 25 ns time scale
- > 58028 atoms
- > <water density>=0.991 g.cm-3
- > <pressure>=1. atm

$C\alpha rmsd$ from the native structure

Cliquez pour modifier le style des sous-titres du masque

Solvent Accessible Surface Area of the I2 model

2 N2

Interface Cliquez pour modifier le style des sous-titres du masque

Secondary structure analysis of the I2 model (monomer 1)

° 310 or π • bet Ω

Secondary structure analysis of the I2 model (monomer 2)

Ω

Residue number

Average structure of I2

c	⊬Helix	β-Sheet
12 (MD)	55%	60%
titres du mas 12 (CD)	que 59%	78%

Conclusion and perspectives

 MD simulations: 3D structure of I2 in agreement with experimental data

MD simulations

Study of the thermal unfolding of the HUc2 homodimer
 3D structure of I2(HUc2)

Comparison of the structure and the dynamics of I2(HUo2) and I2(HUb2) Cliquez pour modifier le style des sous-titres du masque

Biochemical experiments

> Validation of the theoretical model I2

FLEXIDOC

Docking sur récepteur flexible

Cliquez pour modifier le style des sous-titres du masque Région

Cliquez pour modifier le style des sous-titres du masque

Docking flexible protéine-ligand Fédération de Recherche *Physique et Chimie du vivant* FR2708 Financement de la Région Centre (2009-2010)

Dockin

Scorin

LIMITATIONS

Flexibilité du récepteur? S faux négatifs

Développement de méthodes permettant l'amélioration des prédictions issues du

Comparaison MDC – MD0

Cliquez pour modifier le style des sous-titres du masque Partitionnement des conformations du site de fixation

Sélection des conformations du site de fixation

Contraintes de position Potentiel harmonique Atomes: $C\alpha \dot{a}$ faible fluctuation atomique δ [∗]≤ λδmin Constante de force: Cliquez pour modifie te style des stubsztitres du masque Contraintes de position: $\lambda \mu$ Solvant implicite: ϵ Production: plusieurs dizaines de ns Amber 7 MDC($\lambda \mu$, ϵ)

Cliquez pour modifier le style des sous-titres du masque

Partitionnement des conformations du site de fixation Partitionnement: k means algorithm (1)

K' centroids les plus fréquents

(1) MacQueen J. B.; Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1967, 1, 281-297

Sélection des conformations du site de fixation

+: conformation la plus centrale

- : k centroïds
- : k conformations les plus distantes

Résultats MD solvant explicite

Cliquez pour modifier le style des sous-titres du masque

Résultats MD solvant implicite sous contraintes

 \geq 1.5(2): 59(136) atomes C α contraints

		4	4 4 4
Recultate M	r implici	ta colle con	traintae
I VESUITATS IN			

	RMSD(Å)	% hélice α	∆(Å)	RMSD(Å)	% hélice $\boldsymbol{\alpha}$	Δ(Å)				
MD1	2.68	57	0.28	+	+	+				
MD2	3.10	52	0.26			+				
MD3	3.66	39	0.30			+				
MD4	2.29	67	0.42	+	+					
MD5	2.92	57	0.28	+	+	+				
MD6	2.75	55	0.26	+		+				
MD7	3.21	57	0.28		+	+				
MD8 Ciç0ez pour modifier le style des sous-titres du masque										
MD9	2.36	63	0.43	+	+					
MD10	2.95	56	0.51	+						
MD11	3.26	60	0.38		+					
MD12	3.59	54	0.55							
Structures	cristallographiq	ues:	∆=(0).28±0.02)Å						
% hélice	c≥57%		∆>0.	3Å						

Résultats MD solvant implicite sous contraintes Fluctuations atomiques

MD

 $\left(\right)$

2 pour modifier le style des sous-titres du masque

Résultats MD solvant implicite sous contraintes Carte RMSD 2D du site de fixation

Résultats MD solvant implicite sous contraintes Partitionnement des conformations du site de fixation

k		Nu	méro	de co	nform	ation	des c	entroi	ds les	s plus	fréqu	ents		
10 938		818	793		726	581	508	482		335			112	77
10 938		818	793		726	581	508		394	335		145		77
10 938	857	818	793		726	581	508			335			112	77
10 938	857	818		769	726	581	508			335	221			77
8 938	CI	818 liquez	pour	modif	726 fier le	581 style	des so	ous-tit	<mark>394</mark> res di	335 u mas	aue	145	112	
6 938		818	•			581				335	•	145		77
4 938*		818				581						145		77*
3 MD5: 103 100ns	confoi	818 matio	ns pou	F		581								77
				4	<u>_</u>		4.4	-						

15 conformations retenues

Résultats MD solvant implicite sous contraintes Carte RMSD 2D du site de fixation

Résultats MD solvant implicite sous contraintes Sélection des conformations du site de fixation

17 conformations proposées au docking Calculs en cours

Cliquez pour modifier le style des sous-titres du masque

Conclusion

Prise en compte de la flexibilité du site de fixation

Développement méthodologique: Solvant implicite: fonction sigmoïdale Choix des atomes à contraindre

Cliquez pour modifier le style des sous-titres du masque

Perspectives

Champ de contraintes

Réduction du nombre de contraintes (faible fluctuation atomique, hors site de fixation, mouvement harmonique)

Entrée du ligand

Porte d'entrée du ligand *dynamique brownienne* **Chemin d'accès au site de fixation** Détection des cavités résiduelles à partir d'une simulation MD Entrée du ligand *dynamique moléculaire dirigée*

Imagerie Moléculaire

