

Simulations numériques de bio-molécules

Cliquez pour modifier le style des sous-titres du masque Université d'Orléans

Centre de Biophysique Moléculaire – CNRS

Norbert Garnier

Auto-association du domaine transmembranaire du récepteur ErbB2/Neu sauvage et muté

Détermination de modèles structuraux pour l'auto-association

Mécanique moléculaire

Dynamique moléculaire dans le vide

- Mode d'association identique
 pour les formes sauvage et mutée
- Association gauche des hélices
- Interface semblable pour
 les formes sauvage et mutée
- Présence de liaisons hydrogène intermonomère Glu-Glu

Dynamique moléculaire en présence d'un modèle d'environnement membranaire

- → Gain de réalisme biologique
- Puissance informatique croissante
- → Taille des systèmes (20000 atomes) échelle de temps explorée (10 ns) temps de simulation (1000 hCPU)

- Association gauche des hélices
- → Déformations ú

C-ter

Structure initiale

Proximité domaine transmembranaire - environnement

Proximité domaine transmembranaire - environnement

Interface dimérique

Matrice de distance: C∘i(H1) - C∘j(H2)

Interactions inter-hélices

Récepteurs tyrosine kinase Famille HER

Prédiction des modes d'association des domaines transmembranaires des hétérodimères ErbB1-4. Rôle des motifs de dimérisation de type GxxxG

Thermal unfolding of the *E. coli* HU protein: Structural insights from molecular dynamics simulations

The Escherichia coli HU protein

- > small dimeric protein (2x90 residues)
- structure and dynamics of the bacterial DNA
- > 3 dimeric foliquez peur modifier le style des sous-titres du masque
 - homodimer HU₀2, HU_β2
 - heterodimer HUφβ

X ray crystallography

Arm

strand

er le style des sous-titres du masque

♦ helices

Monomer

Dimer HU⋄2 et HU € 2 Cp(J.K-1.mol-1)

Thermal denaturation profile

N2 ← 12 ← 2D

Cliquez pour modifier le style des sous-titres du masque

T(K)

Circular Dichroism

12 dimeric form with a lost of structural elements (α helix and β -sheet)

Goal of the work

- Study of the thermal denaturation of the HU protein
- What is the 3D structure of the I2 intermediate?

Why determining the 3D structure of 12?

Formation of the heterodimer HU₀β from the homodimers HU₀2 and HU_β2.

Methods

Molecular dynamics simulation in explicit solvent at different temperatures

Analysis of the early steps of HU thermal unfolding process

AMBER program

NPT Cliquez pour modifier le

Counter ions Na+, Cl
Particule Mesh Ewald

Initial box dimensions:

80Å x 95Å x 80Å

Results

- 1 MD simulation
- > T=310K
- > 25 ns time scale

Cαrmsd from the native structure

- > 58028 atoms
- > <water density>=0.991 g.cm-3
- > >=1. atm

Cliquez pour modifier le style des sous-titres du masque

Results

5 MD simulations:

- > T=500K
- different initial conditions

Carmsd from the native structure

- > 5 ns time scale
- > 58028 atoms
- > <water density>=0.7087 g.cm-3
- > cliquez pour modifier le style des sous-titres du masque

Results

3 MD simulations:

- > T=400K
- different initial conditions

Cαrmsd from the native structure

- > 10 ns time scale
- > 58028 atoms
- > <water density>=0.8893 g.cm-3

Conf1 = or \neq to Conf2

> cliquez pour modifier le style des sous-titres du masque

2D Cαrmsd

MD refinement of the I2 model

- 1 MD simulation
- > T=310K
- > 25 ns time scale

Carmsd from the native structure

- > 58028 atoms
- > <water density>=0.991 g.cm-3
- > >=1. atm

Cliquez pour modifier le style des sous-titres du masque

Solvent Accessible Surface Area of the I2 model

l2 N2

Dimer

Interface

Cliquez pour modifier le style des sous-titres du masque

12 is a dimer

Secondary structure analysis of the I2 model (monomer 1)

 α ° 310 or π • bet x, . turn,

Secondary structure analysis of the I2 model (monomer 2)

 $^{\circ}$ α $^{\circ}$ 310 or π $^{\bullet}$ bet x, . turn,

Average structure of I2

α-Helix β-Sheet

12 (MD) 55% 60%

titres du masque 78% 78%

Conclusion and perspectives

 MD simulations: 3D structure of I2 in agreement with experimental data

MD simulations

- > Study of the thermal unfolding of the HUo2 homodimer 3D structure of I2(HUo2)
- Comparison of the structure and the dynamics of I2(HUo2) and I2(HUβ2)
 Cliquez pour modifier le style des sous-titres ou masque

Biochemical experiments

Validation of the theoretical model I2

FLEXIDOC Docking sur récepteur flexible

Centre

Cliquez pour modifier le style des sous-titres du masque Région

Récepteur Ligand Ligand

Cliquez pour modifier le style des sous-titres du masque

Docking flexible protéine-ligand

Fédération de Recherche *Physique et Chimie du vivant* FR2708 Financement de la Région Centre (2009-2010)

CONTEXTE

LIMITATIONS

Flexibilité du récepteur?

faux négatifs

Entrée du ligand?

✓ faux positifs

OBJECTIF

Développement de méthodes permettant l'amélioration des prédictions issues du docking

MD: solvant explicite

MD0

Champs de contraintes

MD: solvant implicite, sous contraintes

MDC

Comparaison MDC – MD0

— Cliquez pour modifier le style des sous-titres du masque Partitionnement des conformations du site de fixation

Sélection des conformations du site de fixation

Docking

Structure 3D du récepteur: 4prg_A.pdb
Solvant: 9226 molécules d'eau, 5 Na+
Production: 30 ns
Amber 7

Cliquez pour modifier le des sous-titres du masque

Contraintes de position Potentiel harmonique

Atomes:

 $C\alpha$ à faible fluctuation atomique δ

≥ \lambda \delta min

Constante de force:

Cliquez pour modifie te style des situs litres du masque

Contraintes de position: λμ Solvant implicite: ε

Production: plusieurs dizaines de ns
Amber 7
MDC(λ, μ, ε)

Cliquez pour modifier le style des sous-titres du masque

Comparaison

Structures moyennes:

RMSD(<MDC>, <MD0>)

Eléments de structure secondaire:

% d'hélice α

Dynamique des atomes Cαcontraints:

Cliquez/pol(r/n/odi) er les tyle des 15/2 s-titres du masque

i: numéro Cαcontraint

C: nombre de Cacontraints

Partitionnement des conformations du site de fixation

Site de fixation:

24 structures de complexes protéine - ligand

Protéine

Cliquez pour modifier le style des sous-titres du masque Atome résidu i d ligand

Si d<3.5Å, résidu i appartient au site de fixation

Partitionnement des conformations du site de fixation Partitionnement: k means algorithm (1)

K' centroids les plus fréquents

Sélection des conformations du site de fixation

es du masque

- +: conformation la plus centrale
- : k centroïds
- : k conformations les plus

distantes

Résultats MD solvant explicite

Cliquez pour modifier le style des sous-titres du masque

Résultats MD solvant implicite sous contraintes

λ	μ	3										
		80	r	4r	10r							
2	10			MD1(100ns)	MD2(50ns)							
2	20	MD3(100ns)	MD4(40ns)	MD5(100ns)	MD6(50ns)							
2	40			MD7(100ns)	MD8(50ns)							
1.5	Cliqu 60	ez pour modifier	le style des so MD9(12ns)	us-titres du masq	ue MD10(12ns)							
2	60			MD11(100ns)	MD12(50ns)							

 \not =1.5(2): 59(136) atomes Cαcontraints

Résultats MD solvant implicite sous contraintes

	RMSD(Å)	% hélice α	Δ(Å)	RMSD(Å)	% hélice α	∆(Å)
MD1	2.68	57	0.28	+	+	+
MD2	3.10	5 2	0.26			+
MD3	3.66	39	0.30			+
MD4	2.29	67	0.42	+	+	
MD5	2.92	57	0.28	+	+	+
MD6	2.75	5 5	0.26	+		+
MD7	3.21	57	0.28		+	+
MD8	G ig0ez	pour modifier	le style o	des sous-titres du	ı masqüe	
MD9	2.36	63	0.43	+	+	
MD10	2.95	5 6	0.51	+		
MD11	3.26	60	0.38		+	
MD12	3.59	54	0.55			

Structures cristallographiques:

Max(RMSD)=3Å % hélice ∞57% Δ=(0.28±0.02)Å

∆>0.3Å

Résultats MD solvant implicite sous contraintes Fluctuations atomiques

MD 0 MD 5

2 Chiquez pour modifier le style des sous-titres du masque

n

Résultats MD solvant implicite sous contraintes Carte RMSD 2D du site de fixation

Résultats MD solvant implicite sous contraintes Partitionnement des conformations du site de fixation

k		Nu	méro	de co	nform	ation	des c	entroi	ds les	plus	fréqu	ents		
10 938		818	793		726	581	508	482		335			112	77
10 938		818	793		726	581	508		394	335		145		77
10 938	857	818	793		726	581	508			335			112	77
10 938	857	818		769	726	581	508			335	221			77
8 938	C	818 liguez	nour	modif		581 style	des si	ous-tit	394 res di	335 u mas	SULLE	145	112	
6 938		818	. pour	modii		581	400 0	odo tit	100 d	335	que	145		77
4 938*		818				581						145		77*
3		818				581								77

MD5: 103 conformations pour

100ns

→ 15 conformations retenues

Résultats MD solvant implicite sous contraintes Carte RMSD 2D du site de fixation

Résultats MD solvant implicite sous contraintes Sélection des conformations du site de fixation

17 conformations proposées au docking

Calculs en cours

Cliquez pour modifier le style des sous-titres du masque

Conclusion

Prise en compte de la flexibilité du site de fixation

Développement méthodologique:

Solvant implicite: fonction sigmoïdale

Choix des atomes à contraindre

Cliquez pour modifier le style des sous-titres du masque

Perspectives

Champ de contraintes

Réduction du nombre de contraintes (faible fluctuation atomique, hors site de fixation, mouvement harmonique)

Entrée du ligand

Porte d'entrée du ligand dynamique brownienne

Chemin d'accès au site de fixation

Détection des cavités résiduelles à partir d'une simulation MD

Entrée du ligand dynamique moléculaire dirigée

Imagerie Moléculaire

