Entrepôt de données géolocalisées

14^{ième} journée du projet CASCIMODOT Marie-Dominique Van Damme 30 juin 2011

Missions de l'IFN

Établissement chargé de réaliser l'inventaire permanent du patrimoine forestier sur tout le territoire métropolitain indépendamment de toute question de propriété.

Parmi ces objectifs:

- Connaissance de la ressource forestière et de son évolution dans l'espace et dans le temps.
- Publication de résultats
- Indicateurs de gestion durable
- Études de ressources

Contexte

Etude de faisabilité visant à mettre en place un entrepôt de données sur les données de l'IFN.

- ⇒ Produire des résultats statistiques
- ⇒ Analyser et Explorer avec une grande interactivité
- ⇒ Enrichir la modélisation dimensionnelle en tenant compte des axes géométriques, produire des cartes

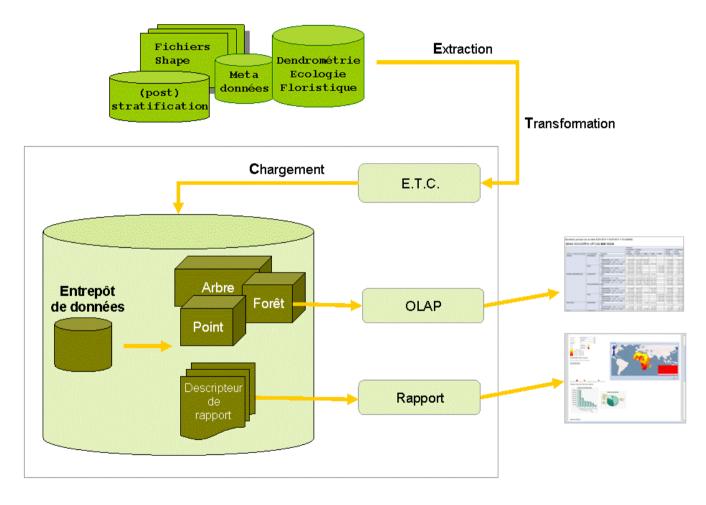
Sommaire

- 1. De OLAP à SOLAP
- 2. Entrepôt de données à l'IFN
- 3. Résultats et Interface Web OLAP Cartographique

De OLAP à SOLAP

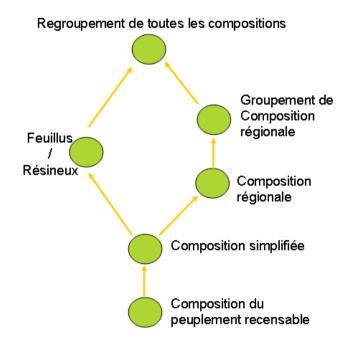
Entrepôts de données

Un entrepôt de données est un ensemble de technologies destinées à permettre à une personne qui manipule des connaissances de prendre des décisions bonnes et rapides.


Ralph Kimball

- Utilisé dans le cadre de l'informatique décisionnel
- Supporte le traitement analytique en ligne : OLAP
- Organisation des données selon le modèle multidimensionnel
- Applications des entrepôts de données :
 - Rapports et outils d'interrogation
 - Fouille de données

Architecture des systèmes décisionnels


Approche multidimensionnelle 1/2

- □ La structure de base de toute application multidimensionnelle est la **dimension**.
- □ Une dimension est une liste complète d'éléments d'entrée et d'éléments calculés ou dérivés.

Elément = donnée qualitative

Dans le cas d'une dimension hiérarchique, nous considérons la **hiérarchie** toute entière, et toutes les hiérarchies s'il y en a plusieurs, comme une seule et même dimension.

Approche multidimensionnelle 2/2

JEN IFN

- Un fait est décrit par plusieurs mesures.
- Les mesures représentent usuellement des valeurs numériques qui fournissent une description quantitative du fait
- Certaines mesures peuvent être calculées à partir d'autres mesures ou propriétés de membres.
- Un fait est associé à une ou plusieurs combinaisons de membres des dimensions.

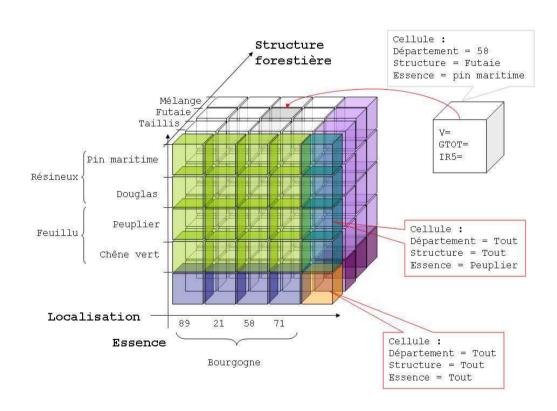
Table de fait

OLAP

MOLAP: structure de stockage en cube:

- Les données pré-agrégées et pré-calculées sont stockées.
- Munie de techniques d'indexation et de hachage.
- Excellent temps de réponse.

ROLAP : structure dans des SGBDR avec un moteur supplémentaire OLAP :


- Fournit une vision multidimensionnelle
- Des calculs dérivés et des agrégations à différents niveaux.
- Génère les requêtes SQL mieux adaptés au schéma de l'entrepôt par une indexation spécifique et des vues matérialisées.

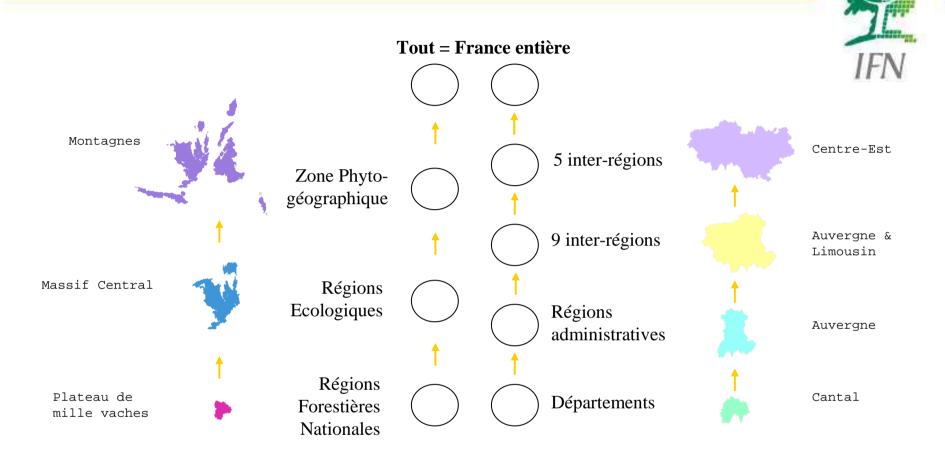
Hypercube

La représentation physique d'un modèle multidimensionnel s'appelle un **hypercube**, on parle de **cube**.

Les opérations sur les données multidimensionnelles les plus fréquentes sont :

- Agrégation ou Roll-Up
- Désagrégation ou Drill-Down
- Projection ou Slicing
- Sélection ou Dicing
- Réorientation ou Rotate (Pivot)

Entrepôt de données spatial


Alliance des applications décisionnelles et des outils SIG

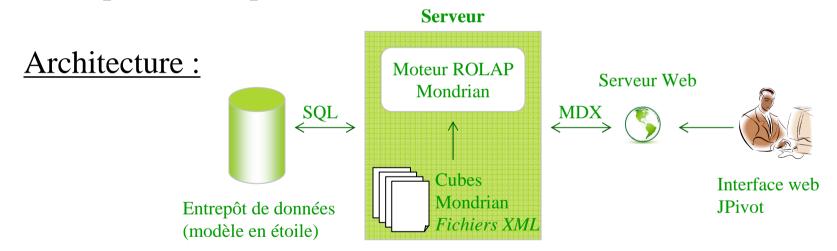
- ⇒ exploiter la dimension spatiale
- ⇒ associer la navigation OLAP à la représentation cartographique

Le concept SOLAP s'appuie sur l'ajout de la dimension spatial au concept de l'OLAP avec adaptation des opérations d'analyses, enrichissement de l'interface et affichage cartographique.

Dimension spatiale

Dimension: Localisation écologique

Dimension: Localisation administrative



Mondrian ou Pentaho Analysis

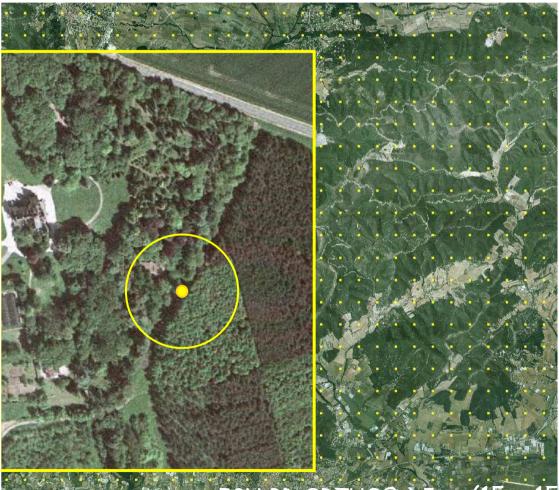
JEN IFN

- Serveur web J2EE
- Moteur OLAP qui permet de concevoir des cubes multidimensionnels.
- Serveur ROLAP
- Référence open source
- Composant indépendant

GeoMondrian

- Basé sur Mondrian, réalisation de l'équipe GeoSOA
- GeoMondrian est le premier serveur open source spatial Olap
- Il implémente les types de données géométriques

Exemple d'une requête avec un filtre spatial sur les membres d'une dimension basée sur la fonction distance :


Entrepôt de données à l'IFN

Méthode statistique: photo-interprétation ponctuelle

- Un échantillon sur l'ensemble du territoire métropolitain
- 1^{ière} subdivision : points photo-interprétés (couverture du sol, utilisation, ...)

Échantillonnage systématique sur BD ORTHO®

Echantillon de phase 1 complet : 80 000 points d'inventaire par an

IGN BD ORTHO® à 5 m (15 x 15 km)

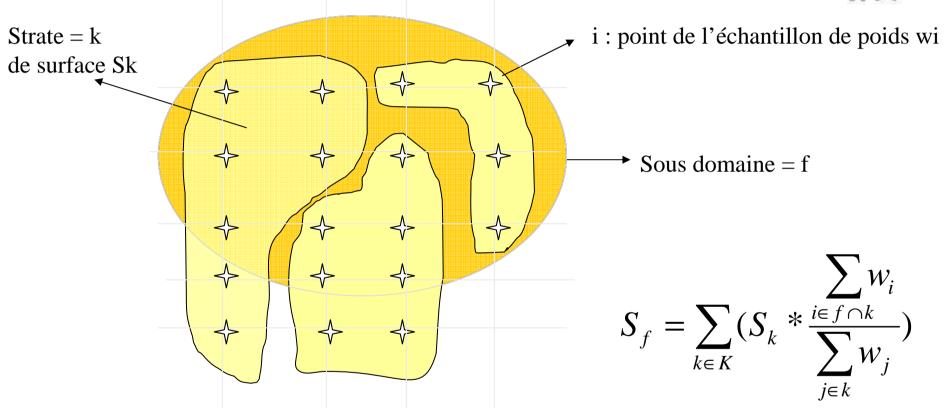
Méthode d'échantillonnage

JEN IFN

- 2^{ième} subdivision : points levés (observations, mesures sur des arbres, ...)

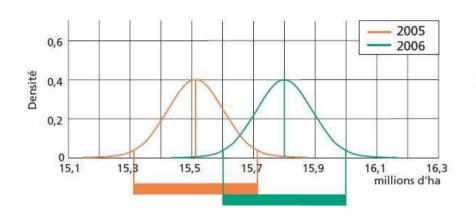
Échantillon terrain 2005

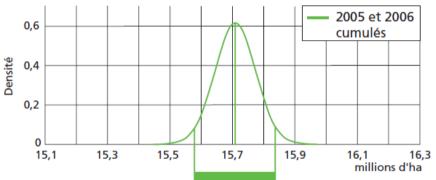
Points levés en forêt de production en 2005 et 2006


500 points en peupleraies 2005, 2006 et 2007

- Domaines d'études différents : Forêt, Landes, Peupleraies, Ecologie, Haies-alignements.
- 8000 points levés par an, 65 000 arbres vifs
- ~ 400 variables saisies par point d'inventaire

Estimation des résultats


Pour une année et une stratification.

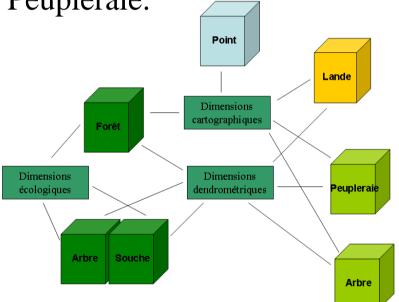


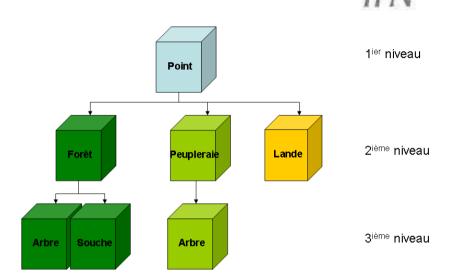
Fenêtre glissante

Le principe de la nouvelle méthode est de produire des résultats sur la base d'un échantillon pluriannuel.

Moyenne simple sur x années de campagne :

$$S_{2007 = [2005 - 2009]} = \frac{S_{2005} + S_{2006} + S_{2007} + S_{2008} + S_{2009}}{5}$$

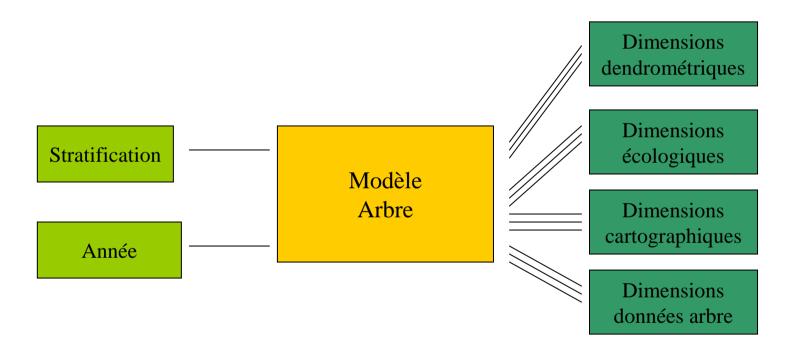



Constellation IFN

Chaque domaines d'études est candidat modèle pour un dimensionnel.

Fusion des modèles Forêt et

Peupleraie.

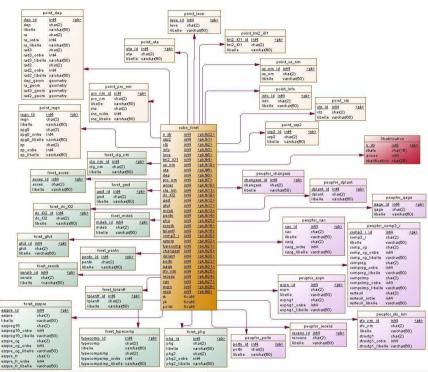

- Héritage de l'information.
- Partage des dimensions ⇒ garder une similarité.

Granularité

Spécifier ce que représente une ligne individuelle de la table de fait.

Dimensions choisies

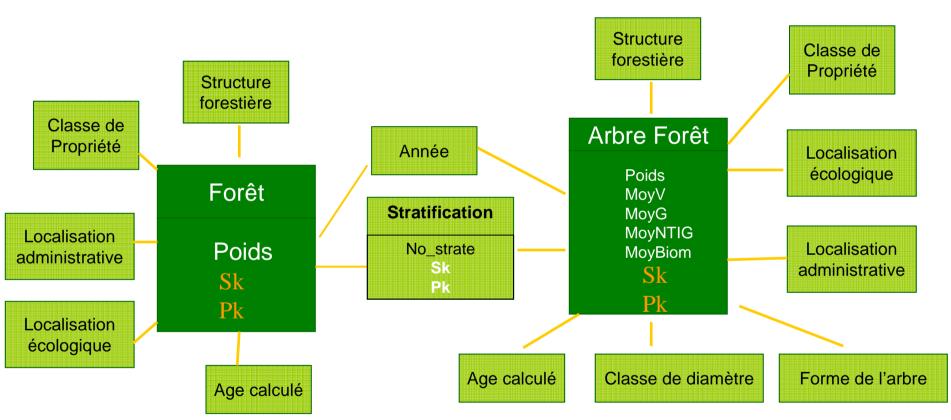
- Dimensions thématiques : caractérisées par les données issues des relevés, composées ou calculées, discrétisées ou regroupées.
- Dimension stratification-année : spécifique à l'IFN, liée au chargement d'une campagne d'inventaire et une stratification.
- Dimensions spatiales : caractérisées par la présence du contour géographique dans les membres des différents niveaux.
 - Dimension Administrative
 - Dimension Écologique



Architecture Mille-pattes

Les nombreuses jointures vont réduire la commodité d'utilisation et la performance.

- ⇒ Combiner les dimensions corrélées en une seule dimension.
- ⇒ Créer des dimensions fourretout avec des données prenant un nombre restreint de valeur comme des indicateurs.



Trop de dimensions!

Faits et mesure

Hétérogénéité

De nouveaux protocoles ont été mis en œuvre créant potentiellement une hétérogénéité sémantique, spatiale et temporelle :

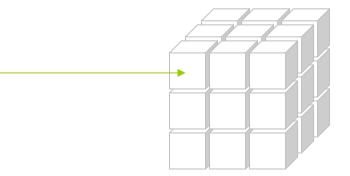
- Nouvelles données dans un protocole.
- Relevés des données abandonnées.
- Changement de définitions des variables. Deux exemples : Exploitabilité, Essence principale.
- Evolution du découpage des zones cartographiques.

Résultats et Interface Web OLAP Cartographique

Mise en place

<u>Définition</u> du schéma unique IFN dans Mondrian :

- 7 cubes + 4 cubes virtuels
- Dimensions et dimensions partagées
- Hiérarchies multiples
- Niveaux et propriétés
- Mesures et membres calculés

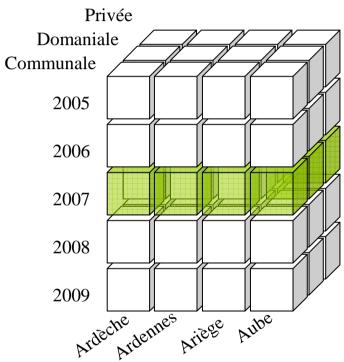


Exemple d'une mesure

On a dans chaque cellule de l'hypercube : pour un sous-domaine, une année et une strate :

- nombre de point, poids du sous-domaine
- surface de la strate et poids de la strate
- variable moyenne

Exemple des mesures « Surf(A) Ha » :


MDX: grammaire et exemple

SELECT axis { , axis}
FROM cube name
WHERE slicer

Exemple:

Select {[Measures].[Nb Point], [Measures].[Surf Ha] on Rows, [Propriété].[Total].Children on Columns, [Loc].[France entière].Children on pages
From Point

MDX: opérations

Slicer:

WHERE permet de sélectionner une partie du cube Communale

Exemple: WHERE ([Loc].[Ariège])

Fonctions numériques : SUM, MAX, AVG, MIN

Exemple: AVG([Année].Members, [Measures].[Nb point])

Opérations sur les membres avec

currentMember, prevMember, nextMember

Exemple:

```
([Propriété].[Communale], [Loc].[Arièqe], [Measures].[Nb point], [Année].[2007])
=([Propriété].[Communale], [Loc].[Ariège],[Measures].[Nb point],[Année].[2008].PrevMember)
=([Propriété].[Communale], [Loc].[Ariège],[Measures].[Nb point],[Année].[2006].NextMember)
```

Privée

Domaniale

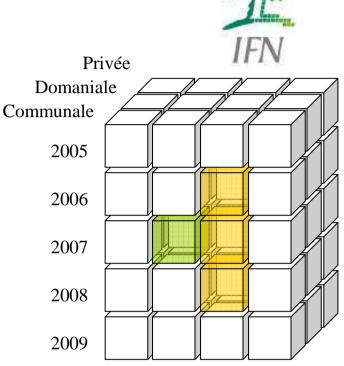
2005

2006

2007

2008

2009


Ardeche Ardennes Ariège Aube

MDX: membres calculés

Pour:

- calculer des mesures
- faire des comparaisons
- recalculer suivant niveau d'agrégation choisi

Calcul de l'estimation de la surface

Pour les cubes « Point », « Forêt », « Peupleraie » et « Landes » IFN

- On établit la surface à l'hectare pour une année et une stratification : Surf(A) Ha
- On calcule la moyenne temporelle : tteSurf(A-1, A, A+1).
- On retire les années extrêmes

[Croisement COUVERTURE x UTILISATION x TAILLE MASSIF]. [total]. [FORET DE PRODUCTION]	[Measures] [Surf]	[Measures] [tteSurf (A,A-1,A+1)] [Meas	ures].[Surf(A,A-1,A+1)]
[Année].[2005]	15,257,800.717	10,073,587.1	
[Année].[2006]	14,962,960.584	15.079.770.618	15,079,770.618
[Année] [2007]	15,018,550.553	15,068,186.984	15,068,186.984
[Année].[2008]	15,223,049.816	15,176,661.846	15,176,661.846
[Année].[2009]	15,288,385.17	10,170,478.329	

• On ajoute la couleur afin de prévenir sur l'incertitude.

	Mesures							
	Surf (A-1,A,A+1) Ha							
	Année							
Localisation Administrative	2005	2006	• 2007	2008	2009			
-RHONE-ALPES		7 772	9 004	9 224				
AIN		3 215	3 531	4 030				
ARDECHE		698						
DROME		165	342	1 112				
HAUTE-SAVOIE								
ISERE		2 934	3 115	2 466				
LOIRE								
RHONE			123	322				
SAVOIE		760	1 894	1 293				

Sous-domaine : [us_nm=PEUPLERAIE]

Résultats dans JPivot

Barre de Menu Dimensions

Tableau résultat multidimensionnel

	Mesures					
	V (A,A-1,A+1) m ³	BIOM_AR (A,A-1,A+1) tms				
	Année	Année				
Diamètre	▶ 2006	▶ 2006				
-total	24 169 582,223	14 707 927,751				
◆ GROS BOIS - D >= 37,5	12 084 648,978	6 977 931,139				
◆ MOYEN BOIS - 22,5 <= D < 37,5	9 018 527,278	5 344 226,184				
◆PETIT BOIS - 7,5 <= D < 22,5	3 066 405,967	2 385 770,428				

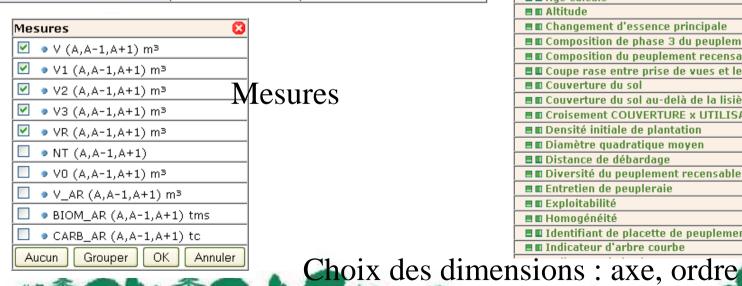


Tableau Graphique ■ Colonnes Mesures ■ Lignes ■ ▼ ▼ Essence principale recensable ■ ▼ A Clone ou cultivar principal ⊽ Filtres ■ ■ Age calculé ■ ■ Altitude ■ Changement d'essence principale ■ Composition de phase 3 du peuplement recensable ■ Composition du peuplement recensable G1 ■ Coupe rase entre prise de vues et levé ■ ■ Couverture du sol ■ Couverture du sol au-delà de la lisière ■ Croisement COUVERTURE x UTILISATION x TAILLE MASSIF ■ ■ Densité initiale de plantation ■ ■ Diamètre quadratique moyen ■ ■ Distance de débardage ■ Diversité du peuplement recensable **■** ■ Entretien de peupleraie **■ ■** Exploitabilité **■ ■** Homogénéité ■ I Identifiant de placette de peuplement ■ Indicateur d'arbre courbe

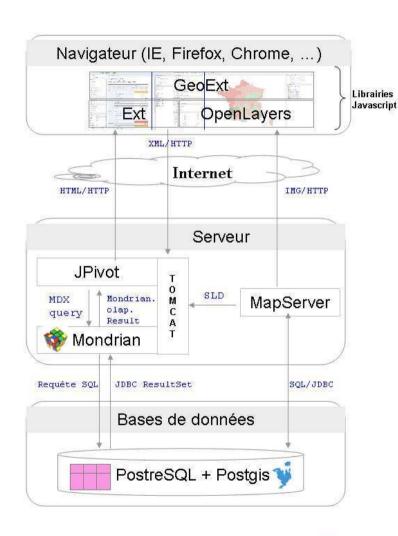
Navigation

Problématiques de l'axe « Année »

JEN IFN

- Attention à la ligne « Hors limite temporelle ».
- Résultats sont des estimations !

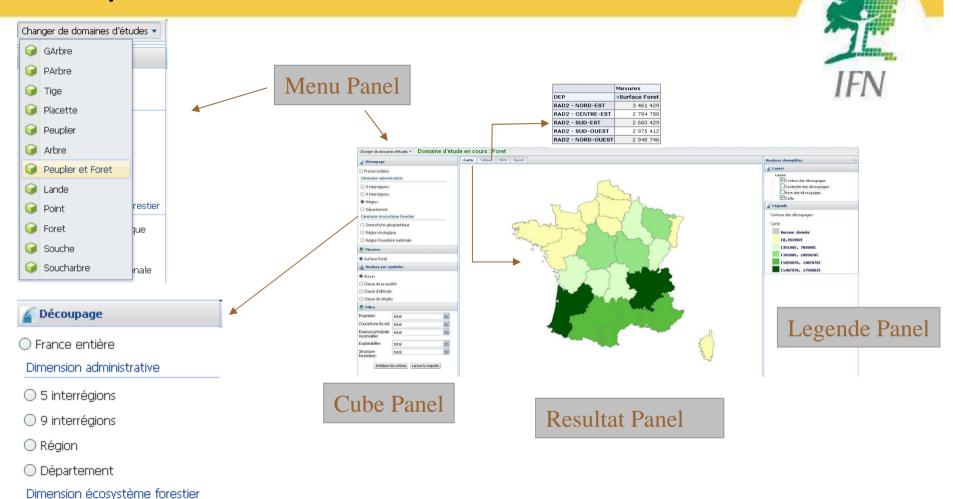
Évolution significative ?

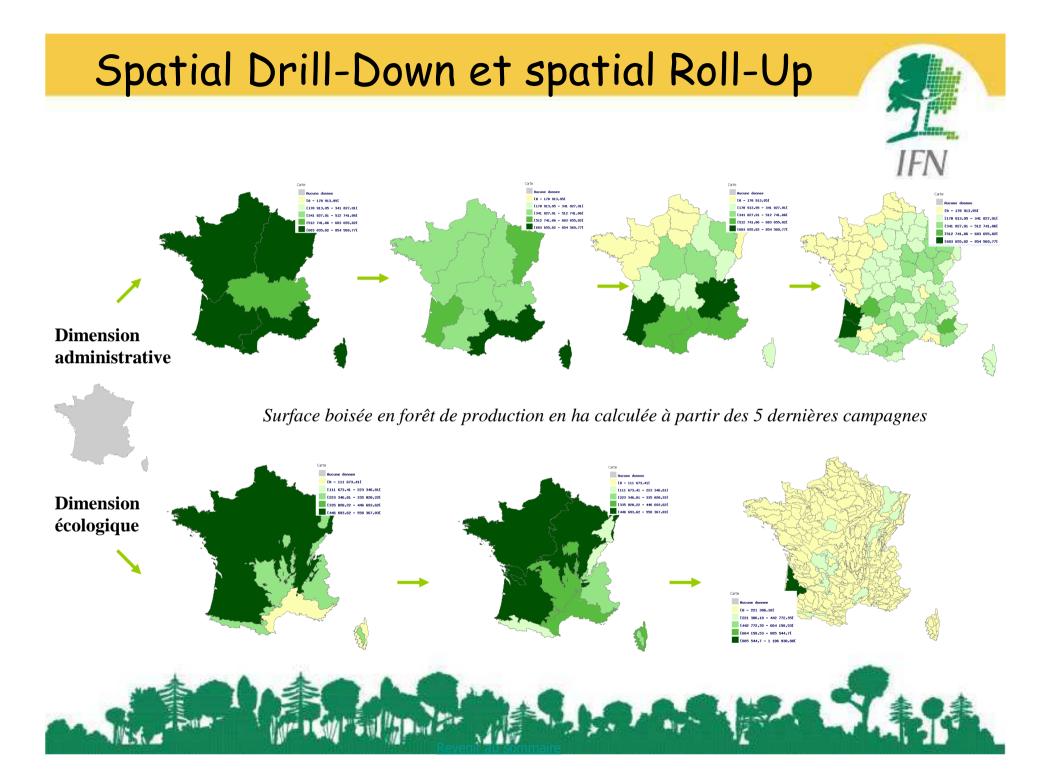

									/		
		Mesures									
		Surf (A	Surf (A-2,A-1,A,A+1,A+2) Ha				Surf (A-1,A,A+1) Ha				
		Année			Année						
	Structure forestière	• 2005	2006	• 2007	• 2008	2009	• 2005	2006	2007	2008	2009
	–total			15 375 229				14 994 944	15 284 306	15 636 622)
	+FUTAIE			6 836 429				5 401 826	8 354 168	8 694 624	
1	+HORS LIMITE TEMPORELLE			3 000 664				5 001 107			
	+MELANGE FUTAIE TAILLIS			3 342 789				2 708 626	4 153 128	4 229 468	
	+NULL										
	*PAS DE STRUCTURE			803 676				671 256	1 011 279	1 011 638	
	+TAILLIS			1 391 671				1 212 129	1 765 731	1 700 891	

Sous-domaine : [us_nm=FORET DE PRODUCTION] [Leve=LEVE REALISE]

Architecture

Architecture 3-tiers:


- PostgreSQL + Postgis
- 2 serveurs :
 - Mondrian
 - MapServer
- 2 clients web:
 - GeoExt
 - OLAP JPivot


Interface

O Zone phyto-géographique

Région écologique

Merci de votre attention

