Comportement de deux modèles de dynamique de la matière organique dans les sols à l'horizon 2100

M. Martin, J. Sierra, D. Delannoy³, D. Ripoche³, D. Arrouays¹ and N. Brisson³

¹INRA Orléans, InfoSol Unit, US 1106, CS 40001, Ardon, 45075, Orléans cedex 2, France ²INRA, UR1231 Agrosystèmes Tropicaux, Petit-Bourg F-97170, France ³INRA, US1116 Agroclim, Avignon F-84914, France

15ème journée du projet CASCIMODOT

présenté aussi à International Symposium on Soil Organic Matter 2011 Organic matter dynamics - from soils to oceans

Le Project Climator

Incertitudes et variabilités

- Fournir des méthodes d'étude et des résultats sur l'impact du changement climatique sur différents systèmes de culture, à l'échelle de la parcelle et pour des situations climatiques fraçaises contrastées.
- Un exercice de simulation dans le contexte du climat futur :
 - prenant en compte différentes cultures
 - prenant en compte les incertitudes par l'utilisation conjointe de différents modèles (ensemble modelling)
- Traduire les hypothèses relatives au climat futur en termes quantitatifs afin de distinguer des effets positifs, négatifs, significatifs ou non sur l'agriculture et la sylviculture.

Le Project Climator

Incertitudes et variabilités

- Fournir des méthodes d'étude et des résultats sur l'impact du changement climatique sur différents systèmes de culture, à l'échelle de la parcelle et pour des situations climatiques fraçaises contrastées.
- Un exercice de simulation dans le contexte du climat futur :
 - prenant en compte différentes cultures
 - prenant en compte les incertitudes par l'utilisation conjointe de différents modèles (ensemble modelling)
- Traduire les hypothèses relatives au climat futur en termes quantitatifs afin de distinguer des effets positifs, négatifs, significatifs ou non sur l'agriculture et la sylviculture.

Le Project Climator

Incertitudes et variabilités

- Fournir des méthodes d'étude et des résultats sur l'impact du changement climatique sur différents systèmes de culture, à l'échelle de la parcelle et pour des situations climatiques fraçaises contrastées.
- > Un exercice de simulation dans le contexte du climat futur :
 - prenant en compte différentes cultures
 - prenant en compte les incertitudes par l'utilisation conjointe de différents modèles (ensemble modelling)
- Traduire les hypothèses relatives au climat futur en termes quantitatifs afin de distinguer des effets positifs, négatifs, significatifs ou non sur l'agriculture et la sylviculture.

Questions

- 1. Comportement probable de cinq systèmes de culture en France à l'horizon 2100
 - Changements du COS vs. entrées de carbone et minéralisation de la matière organique?
- 2. Incertitudes liées
 - aux propriétés des sols
 - aux contraintes agronomiques
 - au climat

3. Ces projections dépendent-elles des modèles utilisés?

Questions

- 1. Comportement probable de cinq systèmes de culture en France à l'horizon 2100
 - Changements du COS vs. entrées de carbone et minéralisation de la matière organique?
- 2. Incertitudes liées
 - aux propriétés des sols
 - aux contraintes agronomiques
 - au climat

3. Ces projections dépendent-elles des modèles utilisés?

Questions

- 1. Comportement probable de cinq systèmes de culture en France à l'horizon 2100
 - Changements du COS vs. entrées de carbone et minéralisation de la matière organique?
- 2. Incertitudes liées
 - aux propriétés des sols
 - aux contraintes agronomiques
 - au climat
- 3. Ces projections dépendent-elles des modèles utilisés?

Questions

- 1. Comportement probable de cinq systèmes de culture en France à l'horizon 2100
 - Changements du COS vs. entrées de carbone et minéralisation de la matière organique?
- 2. Incertitudes liées
 - aux propriétés des sols
 - aux contraintes agronomiques
 - au climat
- 3. Ces projections dépendent-elles des modèles utilisés?

Models indirect coupling

Stics

- STICS est un modèle dynamique, à pas de temps journalier, qui simule le comportement d'un système sol-culture.
- La limite supérieure est l'atmosphère caractérisée par des variables climatiques (rayonnement, températures, la pluviométrie, l'évapotranspiration) et la limite inférieure à l'interface sol / sous-sol.
- La croissance des cultures dépend d'un bilan carbone : interception des radiations solaires par le feuillage pour la formation de biomasse aérienne puis, pendant les phases finales des cycles de croissance, pour la formation des organes récoltés.

- Modèles à compartiments
- $\blacktriangleright C'(t) = \rho(t)AC(t) + B(t)$ Ou C représente la quantité de carbone organique du sol sous ses différentes formes $(C_1, ..., C_n)$.
- Implémentation de formes discretisées de l'équation
- La dynamique dépend
 - d'un modificateur de minéralisation $\rho(t)$
 - des entrées de carbone dans le sol B(t)
 - $\rho(t)$ dépend du climat, de l'occupation du sol, des pratiques culturales, des propriétés des sols

Modèles de la dynamique du Carbone

Modèles de la dynamique du Carbone

Différentes variantes

models Coupling

Modèles de la dynamique du Carbone

Différentes variantes
⇒ RothC

Stics to Century

Climats

- Séries continues ⇒ 2100 de la température, des précipitations et de l'ETP
- Un SRES scenario (A1B)
- Un GCM (Arpege)
- Deux méthodes de désagrégation (QQ et TT)

+

une série climatique constante utilisée comme référence (répétition des observations 1970-1999 par tirage aléatoire)

Approche multi-sites

l'approche spatiale se base sur la prise en compte de 12 sites, qui représentent la variabilité climatique nationale.

Soils, cropping systems & cultivars

Sol	Sol1	Sol2	Sol3
Taux d'argile(%)	12.6	19.6	24.4
Classification	Brun, peu lessivé	lessivé	lessivé
	tronqué	hydromorphe	modal
RU (mm)	tronqué 226	hydromorphe 104	modal 317

5 systems

- 1. MWRW : Maize, Soft wheat, Rapeseed, Durum wheat
- 2. SWSgW : Sunflower, Soft wheat, Sorghum, Durum wheat
- 3. W : Durum wheat
- 4. S : Sunflower
- 5. IM : Irrigated Maize
- two cultivars for each specie

Simulation and data analysis protocol

SWSgW

Initialization

- Observed SOC (stocks for the 0-30cm layer)

Further analysis

- near future : $\Delta C_{p_2} = \overline{\Delta C_{p_2}} - \overline{\Delta C_{p_1}}$

- distant future :

$$\Delta C_{p_3} = \overline{\Delta C_{p_3}} - \overline{\Delta C_{p_1}}$$

Results

SOC changes

- The range of SOC change is $[-1.6, +3.5]kg/m^2$.
- 1st and 3rd quartiles : -0.06 and 0.963 kg/m².

Manuel Martin (INRA)

System Effect

Climatic variability (Station Effect - W)

model dependency

Results

Interactions vs. simple effects

Discussion & Conclusions

- La plupart des stocks de SOC restent stable (mediane : 0.2kg/m²).
 - La gamme des changements est de $[-1.6, +3.5]kg/m^2$.
 - quartiles supérieurs et inférieurs : -0.06 and 0.963 kg/m^2 .
- Le facteur de variation principal est la nature du système de culture : le stockage de carbone pour chaque rotation est très lié à la nature des résidus de culture (pailles et racines pour le SWSgW), et au comportement des cultures face au changement climatique.
- La variabilité climatique sur le territoire a un impact fort.
- Les méthodes de désagrégation climatiques ont peu d'impact,
- ainsi que la variabilité des sols considérée.
- Les conclusions relatives au stockage/destockage de carbone dépendent du modèle considéré.

Perspectives

- Filtrer les variétés selon leur faisabilité.
- Travailler l'interprétation des différences inter-modèles.
- Augmenter la variabilité des sols.
- Etendre l'étude aux systèmes prairiaux et forestiers.

Green book of the climator project

http :

//www.international.inra.fr/research/green_book_of_the_climator_project

More about the system Effects

- Uncertainty: which cannot be determined by our current knowledge with confidence Unpredictable : greenhouse gases concentration scénarios Lacking knowledge : climate models, downscaling methods, crop models
- Variability : which is neither uncertain nor constant Endured: climatic inter-annual variability Chosen : management practices, genotype choice Endured or chosen (depending on the decision scale) : locations and soil

Carbon input vs. SOM mineralisation

Stics to RothC

Figure 1 - Structure of the Rothamsted Carbon Model

RPM : Resistant Plant Material

DPM : Decomposable Plant Material

BIO : Microbial Biomass

HUM : Humified OM IOM : Inert Organic Matter

Simulation and data analysis protocol

Usual Approach Intial state = steady state

Initialization

- Observed SOC (stocks for the 0-30cm layer)

Climator approach

- Compute ΔC for a *stable climate* (Z_0)
- Estimate ΔC caused by climate change relatively to the Z_0 series

Further analysis

- near future : $\Delta C_{p_2} = \overline{\Delta C_{p_2}} - \overline{\Delta C_{p_1}}$ - distant future :