

Numerical modeling of the convection and degassing of a magma system: the case of the Erebus lava lake, Antarctica

> Indira MOLINA Under direction of Alain BURGISSER

General objective: Can we simulate the permanent convection at Erebus?

Introduction and objectives
Numerical modeling

a) The role of crystals
b) The role of bubbles

6. General conclusions

17eme journée CaSciModOT

1. Introduction

Erebus volcano

•Phonolitic lava lake

•Steady state (e.g., *Kyle, 1977; Kelly et al, 2008, Oppenheimer et al, 2009*)

•Window of the magmatic system

1. Introduction

Explosive degassing (strombolian)

Gerst et al., 2008

Passive degassing (lake oscillation)

Courtesy from C.Oppenheimer

1. Introduction

Specific objectives

Can we simulate the convective regime with fluid dynamics?

- Which conduit diameter is sufficient to sustain convection in Erebus?
- Can crystals be part of the melt?
- Which ∆T and crystal content characterize convective currents?
- Explain the role of crystals.
- Explain the role of bubbles.

2. Numerical modeling

Methodology of numerical simulations

2. Numerical modeling

Validation (melt)

	1. Continuity	Equation				
$\varepsilon_{\rm m} + \varepsilon_{\rm s} = 1$		T1				
Melt						
$\frac{\partial}{\partial t} \left(\boldsymbol{\varepsilon}_{\mathrm{m}} \boldsymbol{\rho}_{\mathrm{m}} \right) + \nabla \cdot \left(\boldsymbol{\varepsilon}_{\mathrm{m}} \boldsymbol{\rho}_{\mathrm{m}} \mathbf{v}_{\mathrm{m}} \right) = 0$		T2				
Solid						
$\frac{\partial}{\partial t} \left(\varepsilon_{s} \rho_{s} \right) + \nabla \cdot \left(\varepsilon_{s} \rho_{s} \mathbf{v}_{s} \right) = 0$		T3				
2. Momentum						
Melt		T (
$\frac{\partial}{\partial t} (\varepsilon_{\rm m} \rho_{\rm m} \mathbf{v}_{\rm m}) + \nabla \cdot (\varepsilon_{\rm m} \rho_{\rm m} \mathbf{v}_{\rm m} \mathbf{v}_{\rm m}) = \nabla \cdot \mathbf{S}_{\rm m} + \varepsilon_{\rm m} \rho_{\rm m} \mathbf{g} - \mathbf{F}_{\rm ms} \left(\mathbf{v}_{\rm m} - \mathbf{v}_{\rm s} \right) $						
Solid						
$\frac{\partial}{\partial s} \left(\varepsilon_{s} \rho_{s} \mathbf{v}_{s} \right) + \nabla \cdot \left(\varepsilon_{s} \rho_{s} \mathbf{v}_{s} \mathbf{v}_{s} \right) = \nabla \cdot \mathbf{S}_{s} + \varepsilon_{s} \rho_{s} \mathbf{g} + F_{ms} \left(\mathbf{v}_{m} - \mathbf{v}_{s} \right) - \varepsilon_{s} \nabla P_{m}$						
Stress Tensor						
Melt	Granular					
$\mathbf{S}_{m} = -\mathbf{P}_{m}\mathbf{I} + \mathbf{T}_{m}$	T6 $\mathbf{S}_{s} = -P_{s}^{P}\mathbf{I} + \mathbf{\tau}_{s}^{P}$ if $\varepsilon_{m} \le \varepsilon_{m}^{*}$ Plastic / Frictional	T7				
	$\mathbf{S}_{s} = -\mathbf{P}_{s}^{v}\mathbf{I} + \mathbf{\tau}_{s}^{v}$ if $\varepsilon_{m} > \varepsilon_{m}^{*}$ Kinetic - Collisional	T8				
	Granular normal stress					
$\mathbf{P}_{\mathrm{s}}^{\mathrm{P}} = 10^{24} \left(\boldsymbol{\varepsilon}_{\mathrm{m}}^{*} - \boldsymbol{\varepsilon}_{\mathrm{m}} \right)^{10} \boldsymbol{\varepsilon}_{\mathrm{s}}$	T9 $K_i = f(e, g_o, \rho_s)$ T13					
$\mathbf{P}_{s}^{v} = 2(1+e)\rho_{s}\mathbf{g}_{o}\boldsymbol{\varepsilon}_{s}\boldsymbol{\Theta}_{s}$	T10 $K_2 = f(e, g_o, \rho_s, d_p, \varepsilon_s, K_3)$ T14					
Where $g_o = f(\varepsilon_m, \varepsilon_s)$	T11 $K_3 = f(e, g_o, \rho_s, d_p, \varepsilon_s)$ T15					
$\boldsymbol{\Theta}_{s} = f\left(\boldsymbol{K}_{1}, \boldsymbol{K}_{2}, \boldsymbol{K}_{3}, \boldsymbol{K}_{4}, \boldsymbol{\varepsilon}_{s}, tr\left(\boldsymbol{D}_{s}\right)\right)$	T12 $K_4 = f(e, g_o, \rho_s, d_p)$ T16					
Melt viscous stress	Granular viscous stress					
$\boldsymbol{\tau}_{\mathrm{m}} = 2\varepsilon_{\mathrm{m}}\mu_{\mathrm{m}}\boldsymbol{D}_{\mathrm{m}} - \frac{2}{3}\varepsilon_{\mathrm{m}}\mu_{\mathrm{m}}\mathrm{tr}\left(\boldsymbol{D}_{\mathrm{m}}\right)\boldsymbol{I}$	T17 $\mathbf{\tau}_{s}^{P} = \min\left[2\mu_{s}^{P} \mathbf{\overline{D}}, 2\mu_{s}^{ms} \mathbf{\overline{D}}\right]$ where $\mu_{s}^{P} = \frac{P_{s}^{P} \sin\phi}{2\sqrt{I_{2D}}}; \mu_{s}^{ms} = 100 \text{ Pa s}$	T18				
	$\mathbf{\tau}_{s}^{v} = 2\mu_{s}^{v}\mathbf{D}_{s} + \lambda_{s}^{v}\mathrm{tr}\left(\mathbf{D}_{s}\right)\mathbf{I}$ where $\mu_{s}^{v} = K_{3}\varepsilon_{s}\sqrt{\Theta_{s}}$	T19				
	$\lambda_{\rm s}^{\rm v} = { m K}_2 arepsilon_{ m s} \sqrt{\Theta_{ m s}}$	T20				
Momentum Interface Transfer Coefficient						
Drag forces	Terminal velocity Particle Reynolds Number	er				
$\mathbf{F}_{\mathrm{ns}} = \mathbf{f}\left(\boldsymbol{\varepsilon}_{\mathrm{s}}, \boldsymbol{\varepsilon}_{\mathrm{m}}, \boldsymbol{\rho}_{\mathrm{m}}, \mathbf{d}_{\mathrm{p}}, \mathbf{R}\mathbf{e}_{\mathrm{s}}, \mathbf{V}_{\mathrm{r}}, \mathbf{v}_{\mathrm{s}}, \mathbf{v}_{\mathrm{m}}\right)$	T21 $V_r = f(\varepsilon_m, Re_s)$ T22 $Re_s = f(d_p, \rho_m, \mu_m, \mathbf{v}_s, \mathbf{v}_m)$	T23				
3. Energy						
Melt		TD 4				
$\mathcal{E}_{\mathrm{m}}\rho_{\mathrm{m}}\mathbf{C}_{\mathrm{pm}}\left(\frac{\partial\Gamma_{\mathrm{m}}}{\partial t}+\mathbf{v}_{\mathrm{m}}\cdot\nabla T_{\mathrm{m}}\right)=-\nabla\cdot\mathbf{q}_{\mathrm{m}}+\gamma_{\mathrm{ms}}\left(T_{\mathrm{s}}-T_{\mathrm{m}}\right)$	m)	124				
Solid						
$\mathcal{E}_{s}\rho_{s}\mathbf{C}_{ps}\left(\frac{\partial \mathbf{T}_{s}}{\partial t}+\mathbf{v}_{s}\cdot\nabla\mathbf{T}_{s}\right)=-\nabla\cdot\mathbf{q}_{s}-\gamma_{ms}\left(\mathbf{T}_{s}-\mathbf{T}_{s}\right)$	n)	T25				
Heat conductivity						
Melt conductivity	Granular conductivity					
$\mathbf{q}_{\mathrm{m}} = \varepsilon_{\mathrm{m}} \mathbf{k}_{\mathrm{m}} \nabla \mathbf{T}_{\mathrm{m}} 126 \qquad \mathbf{q}_{\mathrm{s}} = \varepsilon_{\mathrm{s}} \mathbf{k}_{\mathrm{s}} \nabla \mathbf{T}_{\mathrm{s}} \qquad 127$						
Heat Interface Transfer Coefficient						
. T20	Nusselt Number Prandtl Number	T20				
$\gamma_{\rm ms} = f\left(k_{\rm m}, \varepsilon_{\rm s}, {\rm Nu}, {\rm d}_{\rm p}\right)$ 128	$Nu = t \left(\mathcal{E}_{s}, \mathcal{E}_{m}, Ke_{s}, Pr \right) \qquad 1.29 \qquad Pr = t \left(C_{pm}, \mu_{m}, k_{m} \right)$	130				

2. Numerical modeling

Validation (melt plus crystals)

	1. Community	Equation					
$\mathcal{E}_{\rm m} + \mathcal{E}_{\rm s} = 1$		T1					
Melt							
$\frac{\partial}{\partial t} \left(\boldsymbol{\varepsilon}_{\mathrm{m}} \boldsymbol{\rho}_{\mathrm{m}} \right) + \nabla \cdot \left(\boldsymbol{\varepsilon}_{\mathrm{m}} \boldsymbol{\rho}_{\mathrm{m}} \mathbf{v}_{\mathrm{m}} \right) = 0$		T2					
Solid							
$\frac{\partial}{\partial t} \left(\boldsymbol{\varepsilon}_{s} \boldsymbol{\rho}_{s} \right) + \nabla \cdot \left(\boldsymbol{\varepsilon}_{s} \boldsymbol{\rho}_{s} \mathbf{v}_{s} \right) = 0$		Т3					
2. Momentum							
Melt							
$\frac{\partial}{\partial t} \left(\varepsilon_{\rm m} \rho_{\rm m} \mathbf{v}_{\rm m} \right) + \nabla \cdot \left(\varepsilon_{\rm m} \rho_{\rm m} \mathbf{v}_{\rm m} \mathbf{v}_{\rm m} \right) = \nabla \cdot \mathbf{S}_{\rm m} + \varepsilon_{\rm m} \rho_{\rm m} \mathbf{g} - \mathbf{F}_{\rm ms} \left(\mathbf{v}_{\rm m} - \mathbf{v}_{\rm s} \right)$							
Solid							
$\frac{\partial}{\partial t} \left(\varepsilon_{s} \rho_{s} \mathbf{v}_{s} \right) + \nabla \cdot \left(\varepsilon_{s} \rho_{s} \mathbf{v}_{s} \mathbf{v}_{s} \right) = \nabla \cdot \mathbf{S}_{s} + \varepsilon_{s} \rho_{s} \mathbf{g}$	$+F_{ms}(\mathbf{v}_{m}-\mathbf{v}_{s})-\varepsilon_{s}\nabla P_{m}$	T5					
Stress Tensor							
Melt	Granular						
$\mathbf{S}_{m} = -P_{m}\mathbf{I} + \mathbf{\tau}_{m}$	T6 $\mathbf{S}_{s} = -\mathbf{P}_{s}^{P}\mathbf{I} + \mathbf{\tau}_{s}^{P}$ if $\varepsilon_{m} \le \varepsilon_{m}^{*}$ Plastic / Frictional	T7					
	$\mathbf{S}_{s} = -\mathbf{P}_{s}^{v}\mathbf{I} + \mathbf{\tau}_{s}^{v}$ if $\varepsilon_{m} > \varepsilon_{m}^{*}$ Kinetic - Collisional	T8					
Granular normal stress							
$\mathbf{P}_{s}^{P} = 10^{24} \left(\boldsymbol{\varepsilon}_{m}^{*} - \boldsymbol{\varepsilon}_{m} \right)^{10} \boldsymbol{\varepsilon}_{s}$	T9 $K_i = f(e, g_o, \rho_s)$ T13						
$P_{s}^{v} = 2(1+e)\rho_{s}g_{o}\varepsilon_{s}\Theta_{s}$	T10 $K_2 = f(e, g_o, \rho_s, d_p, \varepsilon_s, K_3)$ T14						
Where $g_o = f(\varepsilon_m, \varepsilon_s)$	T11 $K_{3} = f(e, g_{o}, \rho_{s}, d_{p}, \varepsilon_{s})$ T15						
$\boldsymbol{\Theta}_{s} = f\left(\boldsymbol{K}_{1}, \boldsymbol{K}_{2}, \boldsymbol{K}_{3}, \boldsymbol{K}_{4}, \boldsymbol{\varepsilon}_{s}, tr\left(\boldsymbol{D}_{s}\right)\right)$	$\Gamma 12 K_4 = f\left(e, g_o, \rho_s, d_p\right) T 16$						
Melt viscous stress	Granular viscous stress						
$\mathbf{\tau}_{\rm m} = 2\varepsilon_{\rm m}\mu_{\rm m}\mathbf{D}_{\rm m} - \frac{2}{3}\varepsilon_{\rm m}\mu_{\rm m}{\rm tr}\left(\mathbf{D}_{\rm m}\right)\mathbf{I}$	$\mathbf{\tau}_{s}^{p} = \min \left[2\mu_{s}^{p} \mathbf{\overline{D}}, 2\mu_{s}^{ms} \mathbf{\overline{D}}, \right] \text{ where } \mu_{s}^{p} = \frac{\mathbf{P}_{s}^{p} \sin \phi}{2\sqrt{1_{ms}}}; \mu_{s}^{ms} = 100 \text{ Pa s}$	T18					
	$\mathbf{T}^{v} = 2 \mu^{v} \mathbf{D} + \lambda^{v} \text{tr} (\mathbf{D}) \mathbf{I}$ where $\mu^{v} = \mathbf{K}_{v} \varepsilon_{v} \sqrt{\Theta}$	T19					
	$\mathbf{v}_{s} = 2\mu_{s}\mathbf{v}_{s} + \lambda_{s}\mathbf{u} \left(\mathbf{v}_{s}\right)\mathbf{i}$ where $\mu_{s} = \mathbf{k}_{3}\mathbf{v}_{s}\sqrt{\mathbf{v}_{s}}$	T20					
	$\lambda_{\rm s} = \mathbf{K}_2 \varepsilon_{\rm s} \sqrt{\Theta_{\rm s}}$	120					
Momentum Interface Transfer Coefficient							
Drag forces	1 I I I I I I I I I I I I I I I I I I I	T23					
$\mathbf{F}_{\mathrm{ms}} = \mathbf{f}\left(\varepsilon_{\mathrm{s}}, \varepsilon_{\mathrm{m}}, \rho_{\mathrm{m}}, \mathbf{d}_{\mathrm{p}}, \mathrm{Re}_{\mathrm{s}}, \mathbf{V}_{\mathrm{r}}, \mathbf{v}_{\mathrm{s}}, \mathbf{v}_{\mathrm{m}}\right) = 12$	$\mathbf{I} \qquad \mathbf{V}_{r} = \mathbf{I} \left(\mathcal{E}_{m}, \mathbf{K} \mathbf{e}_{s} \right) \mathbf{I} \mathbf{Z} \mathbf{Z} \qquad \mathbf{K} \mathbf{e}_{s} = \mathbf{I} \left(\mathbf{d}_{p}, \boldsymbol{\rho}_{m}, \boldsymbol{\mu}_{m}, \mathbf{v}_{s}, \mathbf{v}_{m} \right)$	125					
M_14	3. Energy						
$ \sum_{\mathcal{E}_m} \rho_m C_{mm} \left(\frac{\partial T_m}{\partial t} + \mathbf{v}_m \cdot \nabla T_m \right) = -\nabla \cdot \mathbf{q}_m + \gamma_{mm} \left(T_m - T_m \right) $		T24					
Solid							
$\mathcal{E}_{s}\rho_{s}C_{ps}\left(\frac{\partial T_{s}}{\partial t}+\mathbf{v}_{s}\cdot\nabla T_{s}\right)=-\nabla\cdot\mathbf{q}_{s}-\gamma_{ms}\left(T_{s}-T_{m}\right)$		T25					
Heat conductivity							
Melt conductivity Granular conductivity							
$\mathbf{q}_{\mathrm{m}} = \varepsilon_{\mathrm{m}} k_{\mathrm{m}} \nabla T_{\mathrm{m}} T26$	$\mathbf{q}_{\mathrm{s}} = \varepsilon_{\mathrm{s}} \mathbf{k}_{\mathrm{s}} \nabla \mathbf{T}_{\mathrm{s}}$	T27					
Heat Interface Transfer Coefficient							
	Nusselt Number Prandtl Number						
$\gamma_{ms} = f(k_m, \varepsilon_s, Nu, d_p)$ T28 N	$u = f(\varepsilon_s, \varepsilon_m, \operatorname{Re}_s, \operatorname{Pr})$ T29 $\operatorname{Pr} = f(C_{pm}, \mu_m, k_m)$	T30					

Data

Crystals (e.g., Dunbar et al. 1994; Kelly et al. 2008):

- *Megacrysts (cm-size) *30 vol.% anorthoclase (no experimental data) *Old crystals (hundreds of years)
- *No cristallization
- *No magma intrusion

Kyle, 1977 crystal circulation (constant magma composition).

Surface velocities of ~0.1 m/s with a mean period of 10 min (Oppenheimer et al. 2009).

Magma system dimensions: McClelland et al. 1989 -> lake diameter 20 m; Dibble et al, 2008 -> conduit 10-20(?) m; Harris et al,1999 -> lake diameter changes in days Oppenheimer et al. 2009 -> since 2001 lake diameter 20-40 m.

#Crystals (e.g., Dunbar et al. 1994; Kelly et al. 2008):

- *Megacrysts (cm-size) *30 vol.% anorthoclase (no experimental data). *Old crystals (thousand of years) *No cristallization
- *No magma intrusion

Kyle, 1977 crystal circulation (constant magma composition.

Surface velocities of ~0.1 m/s with a mean period of 10 min (Oppenheimer et al. 2009).

Magma system dimensions: McClelland et al. 1989 -> lake diameter 20 m; Dibble et al, 2008 -> conduit 10-20(?) m; Harris et al,1999 -> lake diameter changes in days Oppenheimer et al. 2009 -> since 2001 lake diameter 30-35 m.

ΔΤ

$\Delta T = 65^{\circ}C$ (*Sweeney et al, 2008*) $\Delta T < 120^{\circ}C$ (*Calkins et al, 2008*).

Are 30% of crystals recirculating? Can we reproduce the convective rate? Can we reproduce the ΔT ?

Data

Hypotheses

•Constant bulk composition (*Kelly et al, 2008*).

•Constant thermodynamical properties (e.g., heat capacity, conductivity, initial density) (*Mastin and Ghiorso,* 2000)

•Bulk viscosity as function of T (*Giordano et al, 2008*) ->30% crystals (*Krieger and Dougherty, 1959*).

Di 720°C 727 Basalt 780 840 An 857°C

> Glass transition of 700°C (*Russel and Giordano, 2005; Molina et al, 2012*)

Continuity (1 equation) Momentum (1 equation) Energy (1 equation)

Hypotheses

Di 720°C 727 Basalt 780 840 An Rhyolhe An

Glass transition of 700°C (Russel and Giordano, 2005; Violina et al, 2012)

Anorthoclase feldspar composition (*Kelly et al, 2008*)

Or50

Hypotheses

solid

Continuity (1 equation)
 Momentum (1 equation)
 Energy (1 equation)

Hypotheses

Energy (1 equation)

2. Numerical modeling: role of crystals		Bulk density and viscosity definitions		
Crystals as part of the melt (mixture)		Crystals as a separated phase		
One phase		Two phases		
Continuity (fluid)		Continuity (fluid+solid)		
$\rho_{(m+s)} = \varepsilon_{s} \rho_{s} + \varepsilon_{m} \left\{ \rho_{o} \left[1 - \alpha \left(T_{m} - T_{o} \right) \right] \right\}$		$ \rho \left\{ \begin{array}{l} $	$\rho_{\rm m} = \varepsilon_{\rm m} \left\{ \rho_{\rm o} \left[1 - \alpha \left({\rm T}_{\rm m} - {\rm T}_{\rm o} \right) \right] \right\}$ $\rho_{\rm s} \varepsilon_{\rm s} \rightarrow \text{calculated} \left(\rho_{\rm s} : \text{cste} \right)$	
Momentum (fluid)		Momentum (fluid+solid)		
$\overline{\overline{S}}_{m}$ $\mu_{(m+s)} = \mu_{m} \left(1 - \frac{\varepsilon_{s}}{1 - \varepsilon_{m}^{*}} \right)^{-[\eta](1 - \varepsilon_{m}^{*})}$ <i>Krieger and Dougherty (1959)</i>	Symbols	$\overline{\overline{S}}_{m}, \overline{\overline{S}}_{s}$ μ_{m}	$\begin{cases} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	
$\mu_{\rm m} = 10 \exp\left(A + \frac{B}{T_{\rm m} - C}\right)$ Giordano et al. (2008)	$\mu_{\rm m}$ Mixture viscosity A constant B,C f:(oxides,H ₂ O) <i>Kelly et al.</i> (2008) <i>Seaman et al.</i> (2006) T _m ,T _o Magma/initial temperature	$e \\ g_{o} \\ d_{p} \\ \Theta_{s} \\ \varphi \\ \mu_{s}^{max}$	Restitution coefficient Radial distribution function Crystal diameter Granular temperature Friction angle Maximum viscosity (100 Pa s)	

Hypotheses

Old conduit (Massif Central, France) Courtesy S. Vergniolle

Old conduit (Wyoming, USA)

Sinusoidal

Stagnant

Conduit diameter -closed system-

Conduit diameter -closed system-

Conduit diameter -closed system-

Similar behaviour between bi-phase and mixture (central instability, average temperature).

- A 10-m conduit diameter allows keeping a sustained convection in the conduit and consequently higher temperatures in the lake.
- We can simulate the steady-state convection of the lake.

Bi-phase (open system)

2. Numerical modeling: role of crystals

Surface velocities and frequency

Velocities are 3 orders of magnitude lower than the observed values of 10⁻¹ m/s

Period is in the order of month far from the observed period of 10 min. Open system shows a higher convective rate

 ΔT

Conduit

diameter

Heat source

Conclusions

Can we simulate the convective regime with fluid dynamics?

- (1) Validation
 - (2) Steady-state regime of Erebus.
- Which conduit diameter is enough to sustain convection in Erebus?

At least 10-m conduit diameter.

- Can crystals be part of the melt?
- Bi-phase and mixture simulations show similar behaviour in terms of:
 - (1) central instability behaviour
 - (2) temperature evolution
 - (3) surface velocities.
- Which ∆T and crystal content characterize convective currents?
 - (1) A maximum $\Delta T=56^{\circ}C$
 - (2) A maximum Δ [xtal]=4 vol.%

Role of crystals

- (1) 20 vol.% of crystal remain in suspension.
- (2) They enhance the convective rate (amplitude and frequency); however those are still lower than observed values.

2. Numerical modeling: role of bubbles

Data

Time

3. Numerical modeling: role of bubbles

Hypothesis

Open system

•Constant thermodynamical properties (e.g., heat capacity, conductivity, initial density) (*Mastin and Ghiorso*, 2000)

•Bulk viscosity as function of T (*Giordano et al, 2008*) ->30% crystals (*Krieger and Dougherty, 1959*) and H₂O.

Bubbles of H₂O with thermodynamical properties (*Ochkov, 2009*)

Glass transition of 700°C (Russel and Giordano, 2005; Molina et al, 2012)

Only H₂O
Sphere
Rigid
Variable diameter
Grow by expansion and diffusivity
Non coallescence
Non deviatoric stress
Fixed BND 10¹¹
(Pers. comm. Schipper)

2. Numerical modeling: role of bubbles

Hypotheses

2. Numerical modeling: role of bubbles

Constitutive terms

Continuity (fluid+gas)

$$\rho \begin{cases} \rho_{(m+s)} = \varepsilon_{s}\rho_{s} + \varepsilon_{m} \left\{ \rho_{o} \left[1 - \alpha \left(T_{(m+s)} - T_{o} \right) \right] \right] \\ \rho_{g} = \frac{P_{g}M_{g}}{GT_{g}} \end{cases}$$

Reaction rate

$$\frac{\partial \mathbf{X}_{(m+s)}}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \mathbf{D}_{\mathrm{H}_2 \mathrm{O}} \frac{\partial \mathbf{X}_{(m+s)}}{\partial r} \right)$$

Water diffusivity

$$D_{H_{2}O} = \exp\left[-11.924 - 1.003\ln(X_{(m+s)})\right] \exp\left\{\frac{-\exp\left[11.836 - 0.139\ln(X_{(m+s)})\right]}{GT_{(m+s)}}\right\}$$

Freda et al, 2003

Momentum (fluid+gas)

Bulk viscosity

$$\mu \begin{cases} \mu_{g} = 0 \\ \mu_{(m+s)} = \mu_{m} \left(1 - \frac{\varepsilon_{s}}{1 - \varepsilon_{m}^{*}}\right)^{-[\eta](1 - \varepsilon_{m}^{*}]} \end{cases}$$

Giordano et al, 2008 Krieger and Dougherty, 1959 $f(H_2O)$
$$\begin{split} & \overline{\overline{S}} \begin{cases} \overline{\overline{S}}_{(m+s)} = P_{(m+s)} \overline{\overline{I}} + \overline{\overline{\tau}}_{(m+s)} \\ & \overline{\overline{S}}_{g} = P_{g} \overline{\overline{I}} \end{cases} \end{split}$$

By simplifying Lensky et al, 2004 $P_{g} = P_{(m+s)} + \frac{4\sigma}{4} + \frac{4}{5}$

$$f_{g} = P_{(m+s)} + \frac{4\sigma}{d_{b}} + \frac{4d_{b}}{d_{b}} \mu_{(m+s)} \left(1 - \varepsilon_{g}\right)$$

Symbols

 $d_h \rightarrow$ Bubble diameter $D_{H_{2}O} \rightarrow Water diffusivity$ $G \rightarrow$ Universal gas constant $M_g \rightarrow Molar mass of gas$ $P_g, P_{(m+s)} \rightarrow Gas, magma pressure$ $P \rightarrow pressure depth$ $r \rightarrow$ Bubble radius $T_{(m+s)}, T_o \rightarrow Mixture temperature$ $X_{(m+s)} \rightarrow Disolved$ water $\sigma \rightarrow$ Surface tension $\varepsilon_s, \varepsilon_s \rightarrow \text{Crystal/melt fraction}$ $\rho_{\rm (m+s)}, \rho_{\rm g} \rightarrow {\rm Mixture/gas\ density}$ $\mu_{g}, \mu_{(m+s)} \rightarrow Gas$, mixture viscosit $I, \tau_{(m+s)} \rightarrow$ Identity, viscous tensor

> Drag Joshi et al. 2001

Conclusions

- Explain the role of bubbles.
 - Our simulation suggest that magma can rise by intermittent batches of magma.
 - Bubbles increase velocity rate in one order of magnitude but this rate remains two orders of magnitude lower than observed one.

The gas water flux output is two orders of magnitude lower compared to observations.

In order to approach to reality we need to work on the following parameters:

Change the permeability of crust. Change the rate of recharge. This is the first study aiming at understanding the convection of the whole magma system with the MFIX model.

We can simulate the permanent convection in Erebus provided the conduit be large enough.

Numerical ______*Crystal can be considered as part of the melt, however their presence (and more so the presence of bubbles) enhances the modeled velocities at the surface of the lava lake. Those velocities are still 2 orders of magnitude lower than the observed ones.

> Simulations including bubbles can reproduce 10 min period, but we need to reach more time of simulation.

A direction for future work: include the coalescence process.

Remerciements

End

Alain Burgisser (ISTO)

Clive Oppenheimer (Cambridge University) Geneviève Brandeis (IPGP) Timothy Druitt (Université de Clermont Ferrand) Marielle Collombet (Université de Savoie) Jean-Louis Bourdier (Université d'Orléans) Hiroyuki Kumagai (NIED)

Tous mes collègues de l'ISTO (Manu L-T, Juan A, Bruno S, Marina A, Caroline M, Iada G, Michel P, Gabriel C, Fabrice G, Anita C, Michael L, Ida, Remi C), et ceux qu'on passé par ici (Caroline B-de-M, Simona M, Ian S, Jonhatan C, Wimm D, Antonio C, Claudia A, Yves, Gaelle)

Mes amis de partout (Hélène H, Lina O, Leire D-C, Nani R, Juan A, Aurelien C, Christophe T, Christelle Z, Gerardo S, Nico, de Amérique du Sud)

Ma famille (Mama, Don F, Marie-Louise, Claire, hermanitos, Nathalie, PJ, JY, Ben, Eli, Diego)

