

INIVERSITE D'ORLEAN

19^e Journée CaSciModOT

Modélisation Monte Carlo de nanoparticules métalliques: Effet du support de silice amorphe

Alain Cabrel NGANDJONG Centre de Recherche sur la Matière Divisée

Alfred Deville Joël Puibasset Caroline Andreazza Pascal Andreazza

- Magnétisme (augmentation de la capacité de stockage des disques durs)
- ✤ Optique (Plasmonique)
- ✤ Catalyse

INTRODUCTION

INTRODUCTION

Comprendre l'effet du support sur la structure des nanoparticules métalliques

MODÉLISATION MOLÉCULAIRE

Modélisation moléculaire = Outil permettant de décrire le comportement des atomes (molécules) à l'échelle atomique

Potentiel interatomique

Méthode

- **Dynamique moléculaire :** $\begin{cases} m_i \frac{d^2 r_i(t)}{dt^2} = f_i(t) \\ f_i(t) = -\frac{\partial U(r^N)}{\partial r_i(t)} \end{cases}$
- Construire les trajectoires des particules au cours du temps en intégrant les équations du mouvement de Newton
 - $r_i(t), v_i(t)$

Propriétés dynamiques et thermodynamiques

Générer les configurations représentatives du **Monte Carlo:** système dans l'ensemble statistique considéré

Propriétés thermodynamiques

Ecriture d'un code (Fortran)

FIGURE 5 Caloric curves of silver clusters of different sizes and morphologies. The structures correspond to "magic numbers" as considered in Fig. 1.

C.Mottet , J.Goniakowski , F.Baletto , R. Ferrando and G. Treglia (2004): **Modeling free and supported metallic nanoclusters: structure and dynamics, phase transitions, a multinational journal 77:1-2,101-113**

Effet de température

7

Potentiel interatomique métal-Si O_2

S.M.Leville and S.H.Garofalini J. Chem. Phys. 88,1242 (1988) N.I.Vakula,G.M.Kuramshina, and Yu. A. Pentin J . Phys. Chem A,2013, 87,296-302

Eadh = -0,06 eV

N.I.Vakula, G.M.Kuramshina, and Yu. A. Pentin J. Phys. Chem A, 2013, 87, 296-302

(a) Eadh ~ -0.06 eV , ZAg = 3,723 Å

(b) Eadh ~ -0.08 eV , ZAg = 3.201 Å

5% d'écart

MÉTHODE MONTE CARLO

Méthode probabiliste basée sur l'utilisation des nombres aléatoires qui à pour but de générer les configurations (ou états) représentative d'un système

Algorithme de Metropolis

- Tentative de passage de l'état i à l'état j
- Pour U_{j=i+1} > U_i la tentative doit être accepté avec la probabilité P_{ij} = e^{-(U_j-U_i)} on génère un nombre aléatoire ξ dans l'intervalle [0,1] dans une distribution uniforme. si ξ ≤ P_{ij}, on accepte sinon on refuse

11

→ Pour $U_{i=i+1} \leq U_i$, on accepte

à l'equilibre, la moyenne d'une grandeur A est : $\langle A \rangle = \frac{1}{n} \sum_{k=1}^{n} A_k$

QUELQUES RÉSULTATS PRÉLIMINAIRES

Agrégats Supportés

Agrégat à 13 atomes

T=300K

Quartz

Cristobalite

Silice amorphe

Ei = -0,1887 eV

Ei = -0,2140eV

Ei = -0,0827 eV

QUELQUES RÉSULTATS PRÉLIMINAIRES

Ei= -0,2327eV

Ei = -0,2753eV

Ei = -0,1885 eV

- Energie d'adhésion des nanoparticules sur la silice amorphe est moins importance par rapport aux supports cristallins (quartz, cristobalite)
- Mobilité de l'agrégat sur la surface

PERSPECTIVES

14