

Exploration of material properties : Interactive approach at the atomic scale

Okhotnikov Kirill

CEMHTI, CNRS. CaSciModOT, 2013

The Exaviz project.

Cemht

- Marc Baaden, Laboratoire de Biochimie Théorique UPR 9080 CNRS / UNIVERSITÉ PARIS 7
- B. Raffin, INRIA/MOAIS: Multi-programmation et Ordonnancement sur ressources distribuées pour les Applications Interactives de Simulation
- S. Robert, E. Melin, S. Limet, A. Turki, Laboratoire d'Informatique Fondamentale d'Orléans (LIFO), Université d'Orléans
- S. Cadars, CEMHTI Orléans
- N. Férey, LIMSI, Orsay

Crystal structure

- Periodicity.
- Unit cell.

Cemht

- Atom positions.
- Symmetry.

Cemht Disorder in 2D objects.

2D SiO, "glass" on graphene sheet

O,C-doped (graphene-like) BN sheet

angles & distances

ring structures, building units & coordination sequences

atomic substitutions & compositional variability

(a) Zachariasen W.H., J. Am. Chem. Soc., 1932.*(b)* Lichtenstein L. et al., J. Phys. Chem. C, 2012.

Cemht Disordered materials

- Metallic alloys: steel (Fe + C), bronze (Cu + Sn), alloy steel (Fe + Cr, Cu, Ni, Mo).
- Semiconductors: *n*-type (Si + P), *p*-type (Si + B).
- Superconductors: Nb+Ti1, YBaCu₃O_{7-x}
- Glasses and many-many more...

Experiment: Diffraction vs NMR

Cemht

Average over many period of the structure.

Sum of individual contribution of all local environments

Two different type of information!

Cemht **Research work-flow**

Molecular strutcures and properties of crystalline materials can be calculated with quantum mechanics (eq. density functional theory, DFT: up to a few hundred atoms)

«Real» material structure

Cemht Research work-flow

Molecular strutcures and properties of crystalline materials can be calculated with quantum mechanics (eg, density functional theory, DFT: up to a few hundred atoms)

Cemht Structure averaging

The properties (optical, electronic, catalytic...) of many crystalline materials result from the presence of defects in their structures.

Cemht Structure averaging

The properties (optical, electronic, catalytic...) of many crystalline materials result from the presence of defects in their structures.

Real structure Average structure (as determined by classical crystal-= with real atoms (or vacancies) structure-determination methods) Fractional occupancy only 50% of sites occupied by (others are vacancies) **Basic unit cell Mixed composition** site occupied at: - 67% by : - 33% by : Random repartitions of and 🗙

«Complex» crystal with atomic substitutions and vacancies

Cemhti Supercell: Disorder modeling in crystals

The properties (optical, electronic, catalytic...) of many crystalline materials result from the presence of defects in their structures.

DFT2NMR: Spectra simulation

Comparisons between experimental and calculated spectroscopic data require spectral simulations (*no existing user-friendly interactive tool for NMR data*).

Cemht

Integration of existing simulation tools

M. Bak et al., J. Magn. Reson., 2000, 147, 296-330.
 Stevensson B. et al. J. Chem. Phys. 2011, 134, 124104.
 D. Massiot et al. Magn. Reson. Chem., 2002, 40, 70-76.

• Permanent condition during simulation.

- Validation during analysis.
- Change condition during simulation.

Cenhi FlowVR library (INRA-LIFO)

- Fast
- Flexible
- Universal
- Work over network

Modules Exaviz

- Calculations: MD
 Gromacs
- Visualization: OpenGL, CAVE, Qt
- Analysis: NMR spectra, Diffusion etc.
- Interaction: CAVE, Qt

Cemhi FlowVR + Material science

Spectroscopic data is central for the charcaterization of biomolecules or materials. Tools are needed to **compare interactively experimental spectra & simulations**.

Cemhij NMRVis modules (CEMHTI-LIFO).

A first prototype has been designed to calculate and display NMR spectra « on-the-fly » during molecular dynamics simulations of biomolecules.

(1) B. Han et al., J. Biomol. NMR, 2011, 50, 43-57.

Cemparison and prospective.

Implemented.

- Software tools for building complex system: supercell, dft2nmr.
- NMR calculation and FlowVR visualization module was developed using statistical prediction approach.

In process

- Integration of the NMRVis module to ExaviZ workflow.
- Integration of *Ab-initio* NMR spectra calculation to ExaviZ.
- User interactions with spectra and molecules.
- Other physical properties implementation.

Thank you very much for your attention.