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Motivations and objectives

Notations for Bayesian model & MCMC setup

W Bayesian model:

@ the d-dimensional parameter § € © C R

@ a prior distribution 7(0)

@ the data X ~ /(x|0) = the likelihood of the statistical model
(x|0)m(6)

@ the posterior f(6|x) = TUx|0)(0) do non closed-form in general

Omit the dependence to x and denote the posterior simply () usually
known only up to its normalizing constant: f(6) o ¢(x|0)x(0) J
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Motivations and objectives

Notations for Bayesian model & MCMC setup

B Bayesian model:

@ the d-dimensional parameter § € © C R

@ a prior distribution 7(0)

@ the data X ~ /(x|0) = the likelihood of the statistical model
(x|0)m(6)

@ the posterior f(6|x) = TUx|0)(0) do non closed-form in general

Omit the dependence to x and denote the posterior simply () usually
known only up to its normalizing constant: f(6) o ¢(x|0)x(0)

B A MCMC sampler generates a Markov Chain (MC) 6',....6!,...s.1.
9! ~ f = the sampler “target density” when t — oo

Statistical inference from the simulations (LGN, TLC for MC’s)
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Motivations and objectives

A “famous” MCMC algorithm example

The Hastings-Metropolis Algorithm (HM) |

Tool: a proposal density g(y|x) easy to simulate
lteration 67 — §!+1:

1. simulate y ~ (-0
: f 0!
2. let a(fl,y) =min {1, W}

3 sor gttt 1Y with probability a(f%,y)
' ~ | 9! with probability 1—«(fy)

Under mild conditions, (') is a Harris positive, ergodic Markov chain
with stationnary distribution =

(i) Random Walk HM (RWHM), typically y ~ NVy(6%, %) = q(-|0%)
(i) Independence Sampler (1S), i.e. g(¥|x) = q(y)
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Motivations and objectives

Motivation: MCMC samplers evaluation/comparison

Current problems in MCMC application and research:

@ Difficulties in assessing performance of specific MCMC samplers
needed in actual applications
(the old story of MCMC convergence assessment...)

@ Many recent, including Adaptive MCMC (AMCMC) methods
associated in practice to unknown rates of convergence

@ Comparison of candidate (A)MCMC’s against benchmarks, on
synthetic or actual target densities

These questions are crucial even in small-to-moderate dimensions! )
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Motivations and objectives

Partial review of current literature

Tools and methods for MCMC comparison:

@ R package SsamplerCompare Thompson (2010) (usual criterions,

limited to 1 sampler tuning parameter, no HPC)

@ Liu (2012) requires f-specific (tedious!) analytical work
(small sets, regenerative cycles). ..

Needs for comparisons in (A)MCMC developments and
applications: does adaptation really helps?
@ Altaleb & C (2002): Adaptive HM for logit models, d < 5
@ Crain Rosenthal & Wang (2009)
@ Vrugt et al. (2009): AMCMC against benchmarks, d = 10
@ Bai et al. (2010): compares two AMCMC , d <5
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Motivations and objectives

Motivation: A simulation-based software tool

Goal: To propose a methodological “black-box” tool

@ Based on simulation only and not on a theoretical study which is
typically MCMC and/or target-specific

@ For MCMC users: to easily select a good sampler among possible
candidates

@ For researchers: to better understand which (A)MCMC methods
perform best in which circumstances

package Ent ropyMCMC

Methodology based on simulation of “parallel” chains, using High
Performance Computing (HPC)
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Motivations and objectives

Criterion: Kullback divergence to the target pdf

@ p! = the marginal density of the (A)MCMC at “time” (iteration) ¢
@ Define the entropy of a probability density p over RY,

H(p) = /plogp = Ep(log p)

A practical convergence/evaluation criterion:
the evolution in time (f) of the Kullback divergence

t— K(p',f) = /pt log (’?f) =H(p") - /(Iog f)p'

NB: Several results for Kullback divergence as a measure of MC’s and
MCMC'’s convergence
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Entropy (and Kullback) estimation in MCMC context

Estimation of K(p!, f) = H(p') — [ p'log f

We have to estimate #(p') for an unknown p!

@ Many results on estimation of the entropy #(p) for uni- and
multivariate density p from iid observations

@ Historically mostly used only for d =1 or 2

@ Recent motivations for entropy estimation in molecular science,
neuroscience, fluid mechanics for d “large”
(Singh 2001, 2002; Harner et al. 2003; Stowell & Plumbley 2009...)
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Entropy (and Kullback) estimation in MCMC context

Estimation of K(p!, f) = H(p') — [ p'log f

We have to estimate #(p') for an unknown p!
@ Many results on estimation of the entropy #(p) for uni- and
multivariate density p from iid observations
@ Historically mostly used only for d =1 or 2
@ Recent motivations for entropy estimation in molecular science,
neuroscience, fluid mechanics for d “large”

Remember the goal here: Criterion uniquely based on simulation
from the MCMC sampler, no theoretical investigation

Estimation strategy:

@ Build a nonparametric estimate of #(p') from N observations
iid ~ p! at “time” t

@ This requires N copies of iid chains, from which [ p'log f can also
be estimated
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Entropy (and Kullback) estimation in MCMC context

A “parallel chains” framework: N iid copies of the MC
Set 69,...,6% iid~ p° = some diffuse initial distribution, and simulate:

chain#1 9?—)0}—>---—>9€Npt_>...
i P 0 1 t t
chain#i : 6 -6, - --- =0, ~p —---

chain# N : 6% =0, — - =0 ~p' — -

¢ At “time” (or slice) t, the N chains locations
0
o' = | : N-sample iid ~ p!
ON
NB: In MCMC single vs. parallel chains has a long history!
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Entropy (and Kullback) estimation in MCMC context

Estimating [ p'log f from parallel chains

For each “slice of time” (MCMC iteration) t, use the sample
6" = (05,...,04) iid~ p' for:

@ Estimation of [ p’log f directly from the SLLN

pN (log f) = NZIogf

@ But in Bayesian setup f(-) o< ¢(-), only ¢ is available,

2

pi(log ¢) = Zogcb %/plogcb

is accessible (see later)

Note: the shape f or ¢ is used in the estimate in both cases
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Entropy (and Kullback) estimation in MCMC context

Estimation of the entropy for a multivariate density

From a N-sample X = (X, ..., Xy) iid~ p over RY

Methods using plug-in of a nonparametric estimate (KDE) px of p
Survey: Beirlant et al. 1997

@ integral estimates: numerical integration fAN Px log px
@ resubstitution estimate: MC integration 1N Z,’-\; log px(Xi)
o splitting data estimate: i SV logp(V)), X =YUZ
@ Nearest Neighbor (NN) estimates: more on that later!

Most of these estimates require (smoothness) conditions not
appropriate in MCMC context!
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Entropy (and Kullback) estimation in MCMC context

KDE and Hastings-Metropolis samplers

Based on Gyoérfi & Van Der Meulen (1989) splitting estimate:
@ split 8! in two [N/2]-subsamples Y}, and Z},
@ compute btzN(H) = a Kernel Density Estimate (KDE) of p,

[N/2] ¢
1 60— Z
N .
pz,(0) = hNIN/2 Z K< AN : )
i=1

for a kernel K, bandwidth hy and usual assumptions
@ Monte-Carlo integration using Yf\,, foray > 0and limy_.ay =0

[N/2]
NGrAly E oL (Y?
NP = [N/2] i—1 lOQPZN(Y’)H{ﬁIZN(th)ZaN}

Under some smoothness and tail conditions on f and the HM proposal,
HG(p!) — H(p') a.s. as N — oo for t > 1 (C & Vandekerkhove 2012)

Problems: tuning of bandwidth hy, treshold ay, curse of dimension. . .
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Entropy (and Kullback) estimation in MCMC context

Nearest Neighbor (NN) functional estimates

Define the (Euclidean) distance from the ith point to its NN in ¢,
pi = min{d(0},60).j € {1.2....,N},j# i}

The NN estimate of H(p') is (Kozachenko & Leonenko 1987)

i=1

N
Fin(p') = - (,‘i’, > "log(pi) +log(N — 1) + log(Cs(d)) + CE>

Ce, C1(d) known.
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Entropy (and Kullback) estimation in MCMC context

Nearest Neighbor (NN) functional estimates

Define the (Euclidean) distance from the ith point to its NN in ¢,
pi = min{d(0},60).j € {1.2....,N},j# i}

The NN estimate of H(p') is (Kozachenko & Leonenko 1987)

N
Fin(p') = - (,‘i’, > "log(pi) +log(N — 1) + log(Cs(d)) + CE>

i=1
Ce, C1(d) known.

@ Generalization to k-Nearest Neighbor (e.g., Leonenko et al., 2005)

@ Asymptotic unbiasedness and (weak) consistency for any d,
under mild conditions s.a. [ p|log p[>*¢ < o

@ No tuning parameters!, compares successfully with KDE-based
entropy estimate in our experiments
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R package and practical application Principles and High Performance Computing (HPC)
Content of the Ent ropyMCMC package:
Title: MCMC evaluation through entropy estimation

@ Predefined target distributions and standard MCMC samplers

@ Easy definition of user target & samplers

@ Functions for running simulations, estimating entropy and
Kullback’s, methods for visualizing results, comparing samplers

@ NN and KDE codes written in C

@ MCMC parallel simulation can be done within the package, or
imported from external file

@ Two possible strategies:

@ parallel simulation up to time n, then Kullback estimation
@ simultaneous simulation+estimation for each t, forgetting the past

@ HPC implementations using parallel, snow, snow MPI cluster
(Rmp1i), or singlecore version
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R package and practical application Principles and High Performance Computing (HPC)

Definition of a MCMC sampler

A list of named elements:
@ g_pdf: the proposal density q(y|x)
@ g_proposal: the function that simulates a proposal ~ q(-|x)
@ step: the function for simulation of 1 step #! — §!*"

NB: the target f is not in the definition

Example for a Random Walk Hastings-Metropolis:

> RWHMSstep

function (theta, # current position
target_f, # target density
g_pdf=gaussian_pdf, # default proposal
g_proposal=gaussian_proposal,
f_param, g_param) # f & g parameters
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R package and practical application Principles and High Performance Computing (HPC)

MCMC samplers

Some common MCMC'’s currently implemented:
@ RwWHM: Random Walk Hasting-Metropolis
(with default gaussian proposal)

@ HMIS_norm: Independence Sampler HM with gaussian proposal
(from which any HMIS can be defined)

@ AMHaario: Adaptive-Metropolis from Haario (2001)
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R package and practical application Principles and High Performance Computing (HPC)

MCMC samplers

Some common MCMC'’s currently implemented:
@ RwWHM: Random Walk Hasting-Metropolis
(with default gaussian proposal)

@ HMIS_norm: Independence Sampler HM with gaussian proposal
(from which any HMIS can be defined)

@ AMHaario: Adaptive-Metropolis from Haario (2001)

+ IID_norm: a “fake” MCMC = Gaussian iid sampler for which
pt=f=Ng(pX)forall t > 1

N chains for niterations < niid replications of N-samples iid~ f

— estimation of the (known) entropy H(Ny4(11, X)) with replications
— study of MSE, bias ...
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R package and practical application Principles and High Performance Computing (HPC)

MCMC target and proposal

e Target definition @ template
target_f <- function(theta, parameter){...}
where

@ thetais a (n x d) matrix of n d-dim points
(vectorized evaluation preferable)

@ parameter is a list holding all the (hyper-) parameters, including
the data in Bayesian framework where () o ¢(x|0)m(0)

e Proposal density q(y|x) definition

proposal_pdf <- function (next, current, parameter){...}

D. Chauveau (MAPMO-FDP-Orléans) Entropy estimation for MCMC evaluation cascimodot 2016 22/39



R package and practical application Principles and High Performance Computing (HPC)

I: Simulation first and then Kullback estimation

Step 1: Simulate N iid chains from some 6°

MCMCcopies.mc (mcmc_algo, # MCMC definition (list)
n=100, nmc=N, # for n iter. and N chains
Pthetal, # N d-dim starting values
target, f_param, # £ and its parameters
q_param, # proposal parameters
nbcores=detectCores()) # multicore version here

— object of class "p1McMC" holding the MCMC defs & the N
simulated chains in an array (n x d x N) ...that can be huge!
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R package and practical application Principles and High Performance Computing (HPC)

I: Simulation first and then Kullback estimation

Step 1: Simulate N iid chains from some 6°

MCMCcopies.mc (mcmc_algo, # MCMC definition (list)
n=100, nmc=N, # for n iter. and N chains
Pthetal, # N d-dim starting values
target, f_param, # £ and its parameters
q_param, # proposal parameters
nbcores=detectCores()) # multicore version here

— object of class "p1McMC" holding the MCMC defs & the N
simulated chains in an array (n x d x N) ...that can be huge!

Step 2: Compute estimates ﬁN(pf) and IEN(pf, f) from this object

EntropyMCMC.mc (plmcmcl, # result from above
method="Nearest.Neighbor", # or "KDE" or...
nbcores=detectCores()) # parallel version

— @ object of class "KbMCMC" with associated methods (plot,...)
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R package and practical application Principles and High Performance Computing (HPC)

[I: Simulation and Kullback estimation simultaneously

Advantages: Storing only 8! at current t
@ parallel simulation of the N next steps: 8! — 9+
e (parallel) estimation of Hy(p!*1) and Kn(p!*1, f)
@ 0! «— 9™ forgetting the past!

Note: for AMCMC, needed sufficient statistics from the past need to be
stored as well (e.g., empirical covariance matrix,. . .)
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R package and practical application Principles and High Performance Computing (HPC)

[I: Simulation and Kullback estimation simultaneously

Advantages: Storing only 8! at current t
@ parallel simulation of the N next steps: 8! — 9+
e (parallel) estimation of Hy(p!*1) and Kn(p!*1, f)
@ 0! «— 9™ forgetting the past!

Note: for AMCMC, needed sufficient statistics from the past need to be
stored as well (e.g., empirical covariance matrix,. . .)

EntropyParallel.cl (mcmc_algo, # MCMC definition (list)
n=100, nmc=N, Pthetal, # like before
target, f_param, g_param, # £ and g parameters

method="Nearest .Neighbor", # KDE available as well
cltype="PAR_SOCK",nbnodes=4) # cluster type

HPC implementations: socket cluster with parallel, socket cluster
with snow, snow MPI cluster with Rmp1i, or singlecore version

— @ object of class "KbMcMC" with associated methods (plot,...)
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R package and practical application Examples and the curse of dimension

Example: A synthetic multidimensional mixture model

B Target f: A 3 components mixture of d-dimensional Gaussian,

3
f(0) = A\ Na(w, X)(6),

j=1
with parameters
Weights A== A3 = 1/3
means : w1 =014, pup =414, uz=-414
covariances : Y;=jly, j=1,2,3
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R package and practical application Examples and the curse of dimension

Example: A synthetic multidimensional mixture model

B Target f: A 3 components mixture of d-dimensional Gaussian,

3
f(0) = A\ Na(w, X)(6),

j=1
with parameters
Weights A== A3 = 1/3
means : w1 =014, pup =414, uz=-414
covariances : Y;=jly, j=1,2,3

B 5 MCMC samplers:

@ 2 Random-Walk HM with Gaussian proposal variances:
1Iy (RW1) and 414 (RW4)

@ 3 HM Independence Samplers “ISc?” with proposal Ny (0, 0%1y):
IS2, 1S9 and I1S16
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Examples and the curse of dimension

X) visualization

R package and practical application

Target f and proposals q(-

Target and 5 MCMC proposal's

<4 B - RWI
° i - RWA
n — 182
o i — 1S9
S H 1S16
o | e Sample targets
=1 d = 1: overlapping
© B !
z S| | cannot converge!
g g | distance(uq, pu2) = 4
o i
< |
o |
§ | -
T T T T

10
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R package and practical application Examples and the curse of dimension

Target f and proposals q(-|x) visualization

Sample targets

d = 2: less overlapping
distance(p1, po) = 5.67

and so on. ..

0.00
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R package and practical application Examples and the curse of dimension

Simulation & entropy estimation typical coding

library(snow); library(Rmpi) # for MPI cluster
library (EntropyMCMC)
nbnodes <- mpi.universe.size () # max available

n=10000; nmc=500 # iterations & nb of chains N
PthetaO <- DrawInit (nmc,d, initpdf="rnorm",mean=0, sd=5)

varg=1l # proposal parameters definition for RWI
g_param=list (mean=rep (0,d), v=vargxdiag(d))

# Simulation/entropy+Kullback estimation/vizualization
RWl <- EntropyParallel.cl (RWHM, n, nmc, PthetaO,
target, target_param, J_param,

cltype="SNOW_RMPI", nbnodes)

plot (RW1) # S3 method for plotting "KbMCMC" object
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Kullback

R package and practical application Examples and the curse of dimension

d = 2 mixture model: K(p!, f) comparisons

Kullback estimates, dim=2, 500 chains

RWHM var= 1
RWHM var= 4
HMIS gauss var= 2
HMIS gauss var=9
HMIS gauss var= 16

N = 500 iid chains
e Stabilizations ~ 0 give
convergence time
|
WM%MMM‘J WNW’M

L WWMMMW MMM«MW, A WWJW;AM A,

e decays give MCMC’s
performances

° is not converging
All the others similar

- 4‘,5 “'WWWWW%WMW%WWw’WWWW [12 cores time: 24mn]

0 200 400 600 800 1000

iteration
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R package and practical application Examples and the curse of dimension
d = 10: K(p!, f) comparisons

Kullback estimates, dim=10, 1000 chains

Kullback

2 —— RWHM var=4
—— HMIS gauss var= 2 H .
hvis sansvare 16| NoOtice that now:
o IS16 slower than before
IS2 still non convergent
The behaviors change
. with dimension!
~ “only” N = 1000 chains
Wy A O A provide a diagnostic
© [ - Wb Mt W mmsesnasee--| - [12 cores time: 54mn]
T T T T T T
0 2000 4000 6000 8000 10000
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Kullback

R package and practical application Examples and the curse of dimension

d = 20: the curse of dimension!

Algorithm: RWHM, d=20, 500 chains

& plot (RW4,col="green")
8 Why does K(p!, )
stabilizes at a negative

value?

Bias in H(p!) estimation!
when d get’s large

[12 cores time: 27mn]

T T T T T T
0 2000 4000 6000 8000 10000
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R package and practical application Examples and the curse of dimension

Curse of dimension and bias in #(p) np estimates

Effect of dimension on bias, already noticed in recent literature

@ The variance decreases as O(N~1)
@ The bias decreases as O(N~"/(9+1), a “glacially slow” rate
@ both for Kernel density and NN-based estimates

Stowell and Plumbley (2009); Sricharan et al, arxiv (2013),. ..

Confirmed in our case using the TID_norm sampler for H(Ny(0, X))
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R package and practical application Examples and the curse of dimension

Curse of dimension and bias in #(p) np estimates

Effect of dimension on bias, already noticed in recent literature

@ The variance decreases as O(N~1)
@ The bias decreases as O(N~"/(9+1), a “glacially slow” rate
@ both for Kernel density and NN-based estimates

Stowell and Plumbley (2009); Sricharan et al, arxiv (2013),. ..

Confirmed in our case using the TID_norm sampler for H(Ny(0, X))

No need to simulate thousands of MCMC copies (not feasible anyway!)
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Kullback

R package and practical application Examples and the curse of dimension
d = 20 mixture model: bias and decision criterion

Kullback estimates, dim=20, 500 chains

 RwiMvar 4 N = 500 iid chains:
&1 sl | e 1S2 cannot converge!
WIS gasssver 16| o Don't look for
8 1 stabilization ~ 0
v _|
vttt et

0 2000 4000 6000 8000 10000
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Kullback

R package and practical application Examples and the curse of dimension

d = 20 mixture model: bias and decision criterion

Kullback estimates, dim=20, 1000 chains

— RWHM var=1
— RWHM var=4
&1 - lmssiets | e 1S2 cannot converge!
HMIS gauss var= 16 ° Donyt IOOK fOI’
& 1 stabilization ~ 0
N = 1000 iid chains
‘“2 -
{
S i it

0 2000 4000 6000 8000 10000
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Kullback

R package and practical application Examples and the curse of dimension
d = 20 mixture model: bias and decision criterion

Kullback estimates, dim=20, 5000 chains

—— RWHM var=1
— RWHM var=4
&1 - lmssiets | e 1S2 cannot converge!
HMIS gauss var= 16 ° Donyt IOOK fOI’
{ 1 stabilization ~ 0
o N = 5000 iid chains
|
I

0 2000 4000 6000 8000 10000
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Kullback

R package and practical application Examples and the curse of dimension
d = 20 mixture model: bias and decision criterion

Kullback estimates, dim=20, 10000 chains

— RWHMvar=1
— RWHMvar=4
& 1 - lmssiets | e 1S2 cannot converge!
HMIS gauss var= 16 ° Donyt IOOk for
{ 1 stabilization ~ 0
N = 10,000 iid chains!
# e Similar decision than
for N = 500
| both RW’s serve as
o ,,,l,i, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, benchmark convergent
‘ ‘ ‘ ‘ ‘ ‘ MCMC’s here

0 2000 4000 6000 8000 10000
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R package and practical application Examples and the curse of dimension
Methodological approach for large dimension

In practical situations:
@ Trying to achieve the asymptotic unbiasedness is hopeless

@ N can be made large enough in practice so that:

e the variance becomes neglictible, i.e. graphical comparison OK
e but some biasy/(p', d) still remains

@ f(0) = C(f) ¢(6) where C(f) is the unknown normalizing constant
@ A converging MCMC strategy stabilizes ~ log C(f) + biasy(f, d)
@ A non-converging MCMC (p! — g # f) can stabilize anywhere!

Diagnostic using a benchmark MCMC known to converge
Identifying the proper stabilization value including bias, it allows:
@ performance comparison against other MCMC strategies
@ (non-) convergence assessment of other MCMC strategies
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Some typical CPU times

All the examples have been ran on:

@ a 12 cores workstation (2 Intel Xeon CPU X5650 @ 2.67GHz)
@ The Regional cluster CCSC using OpenMPI

Centre de Calcul Scientifique en région Centre http://cascimodot.fdpoisson.fr/?g=ccsc

Total (user + system) times for the d-dim mixture example and
n = 10,000 iterations, 12 cores single workstation:

] HN:SOO\N:1000\

d=2 24 mn

d=10 54 mn
=20 27 mn

d =230 32 mn

NB: more than 6 times faster than using a singlecore version
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Conclusions and perspectives

Pro’s:
@ HPC implementation available for multicore computers, cloud
computing (snow), and actual clusters (Rmpi)
@ simulations (or part of it) from the best sampler are recyclable after
comparisons, or can be re-used in the fly for statistical inference

@ Practical, easy-to-understand graphical criterion

Con’s:
@ heavy computational load for high dimension (what is high?)
@ needs a benchmark MCMC when d gets large (say d > 10)

Ongoing work and perspectives:

@ Dimension reduction through PCA and crossed-entropy estimation

@ Extension to k-NN entropy estimation (Singh et al. 2003) Pbs:
choice of k, bias reduction unclear. ..
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For Further Reading. . .
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