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Motivations and objectives

Notations for Bayesian model & MCMC setup

� Bayesian model:

the d-dimensional parameter θ ∈ Θ ⊆ Rd

a prior distribution π(θ)

the data X ∼ `(x |θ) = the likelihood of the statistical model

the posterior f (θ|x) =
`(x |θ)π(θ)∫
`(x |θ)π(θ) dθ

non closed-form in general

Omit the dependence to x and denote the posterior simply f (θ) usually
known only up to its normalizing constant: f (θ) ∝ `(x |θ)π(θ)

� A MCMC sampler generates a Markov Chain (MC) θ1, . . . , θt , . . . s.t.

θt ∼ f = the sampler “target density” when t →∞

Statistical inference from the simulations (LGN, TLC for MC’s)
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Motivations and objectives

A “famous” MCMC algorithm example

The Hastings-Metropolis Algorithm (HM)

Tool: a proposal density q(y |x) easy to simulate
Iteration θt → θt+1:

1. simulate y ∼ q( · |θt )

2. let α(θt , y) = min
{

1,
f (y)q(θt |y)

f (θt )q(y |θt )

}
3. set θt+1 =

{
y with probability α(θt , y)
θt with probability 1− α(θt , y)

Under mild conditions,
(
θt) is a Harris positive, ergodic Markov chain

with stationnary distribution π

(i) Random Walk HM (RWHM), typically y ∼ Nd (θt ,Σ) ≡ q(·|θt )
(ii) Independence Sampler (IS), i.e. q(y |x) ≡ q(y)
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Motivations and objectives

Motivation: MCMC samplers evaluation/comparison

Current problems in MCMC application and research:

Difficulties in assessing performance of specific MCMC samplers
needed in actual applications
(the old story of MCMC convergence assessment. . . )
Many recent, including Adaptive MCMC (AMCMC) methods
associated in practice to unknown rates of convergence
Comparison of candidate (A)MCMC’s against benchmarks, on
synthetic or actual target densities

These questions are crucial even in small-to-moderate dimensions!
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Motivations and objectives

Partial review of current literature

Tools and methods for MCMC comparison:

R package SamplerCompare Thompson (2010) (usual criterions,
limited to 1 sampler tuning parameter, no HPC)
Liu (2012) requires f -specific (tedious!) analytical work
(small sets, regenerative cycles). . .

Needs for comparisons in (A)MCMC developments and
applications: does adaptation really helps?

Altaleb & C (2002): Adaptive HM for logit models, d ≤ 5
Crain Rosenthal & Wang (2009)
Vrugt et al. (2009): AMCMC against benchmarks, d = 10
Bai et al. (2010): compares two AMCMC , d ≤ 5
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Motivations and objectives

Motivation: A simulation-based software tool

Goal: To propose a methodological “black-box” tool
Based on simulation only and not on a theoretical study which is
typically MCMC and/or target-specific
For MCMC users: to easily select a good sampler among possible
candidates
For researchers: to better understand which (A)MCMC methods
perform best in which circumstances

package EntropyMCMC

Methodology based on simulation of “parallel” chains, using High
Performance Computing (HPC)
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Motivations and objectives

Criterion: Kullback divergence to the target pdf

pt = the marginal density of the (A)MCMC at “time” (iteration) t
Define the entropy of a probability density p over Rd ,

H(p) :=

∫
p log p = Ep(log p)

A practical convergence/evaluation criterion:
the evolution in time (t) of the Kullback divergence

t 7→ K(pt , f ) :=

∫
pt log

(
pt

f

)
= H(pt )−

∫
(log f )pt

NB: Several results for Kullback divergence as a measure of MC’s and
MCMC’s convergence Csiszár 1967, Miclo 1997, Harremoës and Holst
2007, C & Vandekerkhove 2007 & 2012, Douc et al. 2007. . .
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Entropy (and Kullback) estimation in MCMC context

Estimation of K(pt , f ) = H(pt)−
∫

pt log f

We have to estimate H(pt ) for an unknown pt

Many results on estimation of the entropy H(p) for uni- and
multivariate density p from iid observations
Historically mostly used only for d = 1 or 2
Recent motivations for entropy estimation in molecular science,
neuroscience, fluid mechanics for d “large”
(Singh 2001, 2002; Harner et al. 2003; Stowell & Plumbley 2009. . . )

Remember the goal here: Criterion uniquely based on simulation
from the MCMC sampler, no theoretical investigation

Estimation strategy:

Build a nonparametric estimate of H(pt ) from N observations
iid ∼ pt at “time” t
This requires N copies of iid chains, from which

∫
pt log f can also

be estimated
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Entropy (and Kullback) estimation in MCMC context

A “parallel chains” framework: N iid copies of the MC

Set θ0
1, . . . , θ

0
N iid∼ p0 = some diffuse initial distribution, and simulate:

chain # 1 : θ0
1 → θ1

1 → · · · → θt
1 ∼ pt → · · ·

...
...

chain # i : θ0
i → θ1

i → · · · → θt
i ∼ pt → · · ·

...
...

chain # N : θ0
N → θ1

N → · · · → θt
N ∼ pt → · · ·

• At “time” (or slice) t , the N chains locations

θt =

 θt
1
...
θt

N

 N-sample iid ∼ pt

NB: In MCMC single vs. parallel chains has a long history!
D. Chauveau (MAPMO-FDP-Orléans) Entropy estimation for MCMC evaluation cascimodot 2016 12 / 39



Entropy (and Kullback) estimation in MCMC context

Estimating
∫

pt log f from parallel chains

For each “slice of time” (MCMC iteration) t , use the sample
θt = (θt

1, . . . , θ
t
N) iid∼ pt for:

Estimation of
∫

pt log f directly from the SLLN

p̂t
N(log f ) =

1
N

N∑
i=1

log f (θt
i )

But in Bayesian setup f (·) ∝ φ(·), only φ is available,

p̂t
N(logφ) =

1
N

N∑
i=1

logφ(θt
i )→

∫
pt logφ

is accessible (see later)

Note: the shape f or φ is used in the estimate in both cases
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Entropy (and Kullback) estimation in MCMC context

Estimation of the entropy for a multivariate density

From a N-sample X = (X1, . . . ,XN) iid∼ p over Rd

Methods using plug-in of a nonparametric estimate (KDE) p̂X of p
Survey: Beirlant et al. 1997

integral estimates: numerical integration
∫

AN
p̂X log p̂X

resubstitution estimate: MC integration 1
N
∑N

i=1 log p̂X (Xi)

splitting data estimate: 1
N/2

∑[N/2]
i=1 log p̂Z (Yi), X = Y ∪ Z

Nearest Neighbor (NN) estimates: more on that later!

Most of these estimates require (smoothness) conditions not
appropriate in MCMC context!
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Entropy (and Kullback) estimation in MCMC context

KDE and Hastings-Metropolis samplers

Based on Györfi & Van Der Meulen (1989) splitting estimate:
split θt in two [N/2]-subsamples Y t

N and Z t
N

compute p̂t
Z N

(θ) = a Kernel Density Estimate (KDE) of pt ,

p̂t
Z N

(θ) =
1

hN
dN/2

[N/2]∑
i=1

K
(
θ − Z t

i
hN

)
for a kernel K , bandwidth hN and usual assumptions
Monte-Carlo integration using Y t

N , for aN > 0 and limN→∞ aN = 0

ĤG
N (pt ) =

1
[N/2]

[N/2]∑
i=1

log p̂t
Z N

(Y t
i ) I{

p̂t
ZN

(Y t
i )≥aN

}
Under some smoothness and tail conditions on f and the HM proposal,
ĤG

N (pt )→ H(pt ) a.s. as N →∞ for t ≥ 1 (C & Vandekerkhove 2012)

Problems: tuning of bandwidth hN , treshold aN , curse of dimension. . .
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Entropy (and Kullback) estimation in MCMC context

Nearest Neighbor (NN) functional estimates

Define the (Euclidean) distance from the i th point to its NN in θt ,

ρi = min
{

d(θt
i , θ

t
j ), j ∈ {1,2, . . . ,N}, j 6= i

}
The NN estimate of H(pt ) is (Kozachenko & Leonenko 1987)

ĤN(pt ) = −

(
d
N

N∑
i=1

log(ρi) + log(N − 1) + log(C1(d)) + CE

)

CE , C1(d) known.

Generalization to k -Nearest Neighbor (e.g., Leonenko et al., 2005)

Asymptotic unbiasedness and (weak) consistency for any d ,
under mild conditions s.a.

∫
p| log p|2+ε <∞

No tuning parameters!, compares successfully with KDE-based
entropy estimate in our experiments
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R package and practical application Principles and High Performance Computing (HPC)

Content of the EntropyMCMC package:

Title: MCMC evaluation through entropy estimation

Predefined target distributions and standard MCMC samplers
Easy definition of user target & samplers
Functions for running simulations, estimating entropy and
Kullback’s, methods for visualizing results, comparing samplers
NN and KDE codes written in C
MCMC parallel simulation can be done within the package, or
imported from external file
Two possible strategies:

1 parallel simulation up to time n, then Kullback estimation
2 simultaneous simulation+estimation for each t , forgetting the past

HPC implementations using parallel, snow, snow MPI cluster
(Rmpi), or singlecore version
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R package and practical application Principles and High Performance Computing (HPC)

Definition of a MCMC sampler

A list of named elements:
q_pdf: the proposal density q(y |x)

q_proposal: the function that simulates a proposal ∼ q(·|x)

step: the function for simulation of 1 step θt → θt+1

NB: the target f is not in the definition

Example for a Random Walk Hastings-Metropolis:

> RWHM$step
function (theta, # current position

target_f, # target density
q_pdf=gaussian_pdf, # default proposal
q_proposal=gaussian_proposal,
f_param, q_param) # f & q parameters

{...}
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R package and practical application Principles and High Performance Computing (HPC)

MCMC samplers

Some common MCMC’s currently implemented:

RWHM: Random Walk Hasting-Metropolis
(with default gaussian proposal)
HMIS_norm: Independence Sampler HM with gaussian proposal
(from which any HMIS can be defined)
AMHaario: Adaptive-Metropolis from Haario (2001)

+ IID_norm: a “fake” MCMC = Gaussian iid sampler for which
pt ≡ f = Nd (µ,Σ) for all t ≥ 1

N chains for n iterations⇔ n iid replications of N-samples iid∼ f
→ estimation of the (known) entropy H(Nd (µ,Σ)) with replications
→ study of MSE, bias . . .
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R package and practical application Principles and High Performance Computing (HPC)

MCMC target and proposal

• Target definition template

target_f <- function(theta, parameter){...}

where

theta is a (n × d) matrix of n d-dim points
(vectorized evaluation preferable)
parameter is a list holding all the (hyper-) parameters, including
the data in Bayesian framework where f (θ) ∝ `(x |θ)π(θ)

• Proposal density q(y |x) definition

proposal_pdf <- function(next, current, parameter){...}

D. Chauveau (MAPMO-FDP-Orléans) Entropy estimation for MCMC evaluation cascimodot 2016 22 / 39



R package and practical application Principles and High Performance Computing (HPC)

I: Simulation first and then Kullback estimation

Step 1: Simulate N iid chains from some θ0

MCMCcopies.mc(mcmc_algo, # MCMC definition (list)
n=100, nmc=N, # for n iter. and N chains
Ptheta0, # N d-dim starting values
target, f_param, # f and its parameters
q_param, # proposal parameters
nbcores=detectCores()) # multicore version here

→ object of class "plMCMC" holding the MCMC defs & the N
simulated chains in an array (n × d × N) . . . that can be huge!

Step 2: Compute estimates ĤN(pt ) and K̂N(pt , f ) from this object

EntropyMCMC.mc(plmcmc1, # result from above
method="Nearest.Neighbor", # or "KDE" or...
nbcores=detectCores()) # parallel version

→ object of class "KbMCMC" with associated methods (plot,. . . )
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R package and practical application Principles and High Performance Computing (HPC)

II: Simulation and Kullback estimation simultaneously

Advantages: Storing only θt at current t
parallel simulation of the N next steps: θt → θt+1

(parallel) estimation of ĤN(pt+1) and K̂N(pt+1, f )

θt ← θt+1 forgetting the past!
Note: for AMCMC, needed sufficient statistics from the past need to be
stored as well (e.g., empirical covariance matrix,. . . )

EntropyParallel.cl(mcmc_algo, # MCMC definition (list)
n=100, nmc=N, Ptheta0, # like before
target, f_param, q_param, # f and q parameters
method="Nearest.Neighbor", # KDE available as well
cltype="PAR_SOCK",nbnodes=4) # cluster type

HPC implementations: socket cluster with parallel, socket cluster
with snow, snow MPI cluster with Rmpi, or singlecore version

→ object of class "KbMCMC" with associated methods (plot,. . . )
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R package and practical application Examples and the curse of dimension

Example: A synthetic multidimensional mixture model

� Target f : A 3 components mixture of d-dimensional Gaussian,

f (θ) =
3∑

j=1

λj Nd (µj ,Σj)(θ),

with parameters

weights : λ1 = λ2 = λ3 = 1/3
means : µ1 = 01d , µ2 = 41d , µ3 = −41d

covariances : Σj = jId , j = 1,2,3

� 5 MCMC samplers:
2 Random-Walk HM with Gaussian proposal variances:
1Id (RW1) and 4Id (RW4)
3 HM Independence Samplers “ISσ2” with proposal Nd (0, σ2Id ):
IS2, IS9 and IS16
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R package and practical application Examples and the curse of dimension

Target f and proposals q(·|x) visualization
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Sample targets
d = 1: overlapping

IS2 cannot converge!
distance(µ1, µ2) = 4

d = 2: less overlapping
distance(µ1, µ2) = 5.67

and so on. . .
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R package and practical application Examples and the curse of dimension

Simulation & entropy estimation typical coding

library(snow); library(Rmpi) # for MPI cluster
library(EntropyMCMC)
nbnodes <- mpi.universe.size() # max available

n=10000; nmc=500 # iterations & nb of chains N
Ptheta0 <- DrawInit(nmc,d,initpdf="rnorm",mean=0,sd=5)

varq=1 # proposal parameters definition for RW1
q_param=list(mean=rep(0,d), v=varq*diag(d))

# Simulation/entropy+Kullback estimation/vizualization
RW1 <- EntropyParallel.cl(RWHM, n, nmc, Ptheta0,

target, target_param, q_param,
cltype="SNOW_RMPI", nbnodes)

plot(RW1) # S3 method for plotting "KbMCMC" object
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R package and practical application Examples and the curse of dimension

d = 2 mixture model: K(pt , f ) comparisons
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Kullback estimates, dim=2, 500 chains

iteration
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RWHM var= 1
RWHM var= 4
HMIS gauss var= 2
HMIS gauss var= 9
HMIS gauss var= 16

N = 500 iid chains
• Stabilizations ≈ 0 give
convergence time

• decays give MCMC’s
performances
• IS2 is not converging
All the others similar

[12 cores time: 24mn]
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d = 10: K(pt , f ) comparisons
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Kullback estimates, dim=10, 1000 chains

iteration
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RWHM var= 4
HMIS gauss var= 2
HMIS gauss var= 16 Notice that now:

IS16 slower than before
IS2 still non convergent

The behaviors change
with dimension!

“only” N = 1000 chains
provide a diagnostic

[12 cores time: 54mn]
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d = 20: the curse of dimension!
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Algorithm: RWHM, d=20, 500 chains

iteration
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plot(RW4,col="green")

Why does K(pt , f )
stabilizes at a negative
value?

Bias in H(pt ) estimation!
when d get’s large

[12 cores time: 27mn]
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Curse of dimension and bias in H(p) np estimates

Effect of dimension on bias, already noticed in recent literature

Facts and numerical evidence
The variance decreases as O(N−1)

The bias decreases as O(N−1/(d+1)), a “glacially slow” rate
both for Kernel density and NN-based estimates

Stowell and Plumbley (2009); Sricharan et al, arxiv (2013),. . .

Confirmed in our case using the IID_norm sampler for H(Nd (0,Σ))

But we are only interested in decay and stabilization
No need to simulate thousands of MCMC copies (not feasible anyway!)
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d = 20 mixture model: bias and decision criterion

0 2000 4000 6000 8000 10000
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Kullback estimates, dim=20, 500 chains

iteration

K
ul
lb
ac
k

RWHM var= 1
RWHM var= 4
HMIS gauss var= 2
HMIS gauss var= 9
HMIS gauss var= 16

N = 500 iid chains:
• IS2 cannot converge!
• Don’t look for
stabilization ≈ 0

N = 1000 iid chains
N = 5000 iid chains
N = 10,000 iid chains!

• Similar decision than
for N = 500

both RW’s serve as
benchmark convergent
MCMC’s here
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d = 20 mixture model: bias and decision criterion
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d = 20 mixture model: bias and decision criterion
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Methodological approach for large dimension

In practical situations:
Trying to achieve the asymptotic unbiasedness is hopeless
N can be made large enough in practice so that:

the variance becomes neglictible, i.e. graphical comparison OK
but some biasN(pt ,d) still remains

f (θ) = C(f )φ(θ) where C(f ) is the unknown normalizing constant
A converging MCMC strategy stabilizes ≈ log C(f ) + biasN(f ,d)

A non-converging MCMC (pt → g 6= f ) can stabilize anywhere!

Diagnostic using a benchmark MCMC known to converge
Identifying the proper stabilization value including bias, it allows:

performance comparison against other MCMC strategies
(non-) convergence assessment of other MCMC strategies
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Outline: Next up. . .

1 Motivations and objectives

2 Entropy (and Kullback) estimation in MCMC context

3 R package and practical application
Principles and High Performance Computing (HPC)
Examples and the curse of dimension

4 Conclusions and perspectives
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Some typical CPU times

All the examples have been ran on:
a 12 cores workstation (2 Intel Xeon CPU X5650 @ 2.67GHz)
The Regional cluster CCSC using OpenMPI
Centre de Calcul Scientifique en région Centre http://cascimodot.fdpoisson.fr/?q=ccsc

Total (user + system) times for the d-dim mixture example and
n = 10,000 iterations, 12 cores single workstation:

N = 500 N = 1000
d = 2 24 mn

d = 10 54 mn
d = 20 27 mn
d = 30 32 mn

NB: more than 6 times faster than using a singlecore version
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Conclusions and perspectives

Pro’s:
HPC implementation available for multicore computers, cloud
computing (snow), and actual clusters (Rmpi)
simulations (or part of it) from the best sampler are recyclable after
comparisons, or can be re-used in the fly for statistical inference
Practical, easy-to-understand graphical criterion

Con’s:
heavy computational load for high dimension (what is high?)
needs a benchmark MCMC when d gets large (say d ≥ 10)

Ongoing work and perspectives:

Dimension reduction through PCA and crossed-entropy estimation
Extension to k -NN entropy estimation (Singh et al. 2003) Pbs:
choice of k , bias reduction unclear. . .
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The end

THANKS FOR YOUR ATTENTION !
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