Reuse of transcriptome data: how to create and process large scale data to understand biological processes.

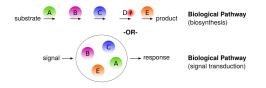
Thomas Dugé de Bernonville

Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales Thèse en cours: **Franziska Liesecke**

June 2017

Transcriptome = sum of all transcripts

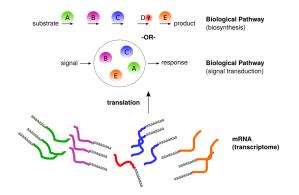
DNA is transcribed into RNA which is in turn translated into proteins



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Transcriptome = sum of all transcripts

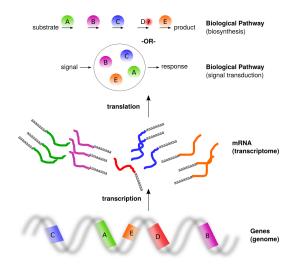
DNA is transcribed into RNA which is in turn translated into proteins



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

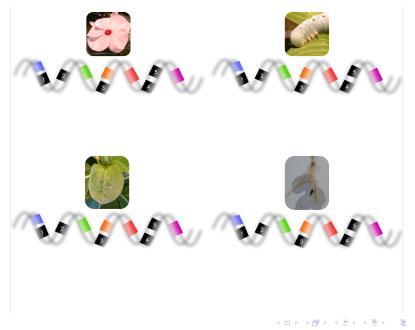
Transcriptome = sum of all transcripts

DNA is transcribed into RNA which is in turn translated into proteins



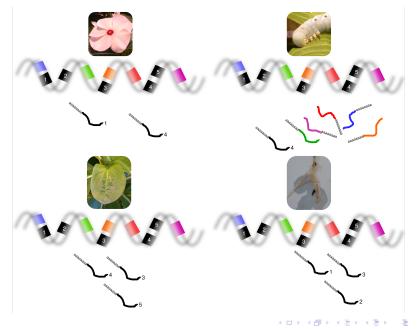
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A dynamic profiling of gene expression



つくぐ

A dynamic profiling of gene expression



SQC.

Use raw gene expression data to reconstruct and complete *in silico* biological pathways

Hybridization (base pair complementarity)

Sequencing (determine each base)

PLOS COMPUTATIONAL BIOLOGY

TOPIC PAGE

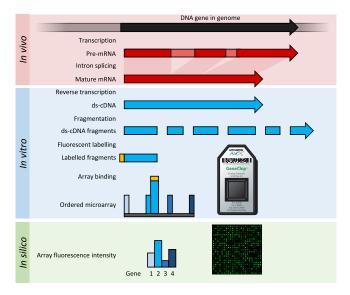
Transcriptomics technologies

Rohan Lowe¹, Neil Shirley², Mark Bleackley¹, Stephen Dolan³, Thomas Shafee¹*

1 La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia, 2 ARC Centre of Excellence in Plant Cell Walls, University of Adelaide, Adelaide, Australia, 3 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom

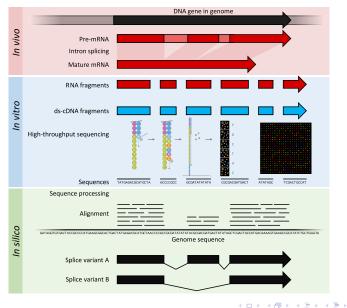
* T.Shafee@LaTrobe.edu.au

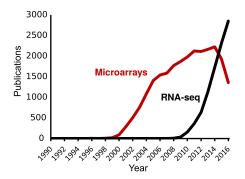
Microarrays = Hybridization-based



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

RNA-sequencing = Sequencing-based





Method	RNA-Seq	Microarray	
Throughput	High	Higher	
Input RNA amount	Low ~ 1 ng total RNA	High ~ 1 µg mRNA	
Labour intensity	High (sample preparation and data analysis)	Low	
Prior knowledge	None required, though genome sequence useful	Reference transcripts required for probes	
Quantitation accuracy	~90% (limited by sequence coverage)	>90% (limited by fluorescence detection accuracy)	
Sequence resolution	Can detect SNPs and splice variants (limited by sequencing accuracy of ~99%)	Dedicated arrays can detect splice variants (limited by probe design and cross-hybridisation)	
Sensitivity	10 ⁻⁶ (limited by sequence coverage)	10 ⁻³ (limited by fluorescence detection)	
Dynamic range	>10 ⁵ (limited by sequence coverage)	103-104 (limited by fluorescence saturation)	
Technical reproducibility	>99%	>99%	

Using gene expression data

Gene co-expression analysis

Use transcriptome analysis to capture relationships between transcripts

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Correlation of gene expression levels

=Comparison of their expression profiles

	Tissue1	Tissue2	Tissue3	Tissue4
GeneB				
GeneC GeneD				
GeneE GeneG				

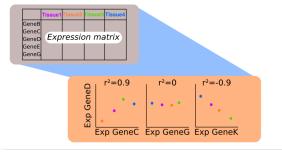
Using gene expression data

Gene co-expression analysis

Use transcriptome analysis to capture relationships between transcripts

Correlation of gene expression levels

=Comparison of their expression profiles



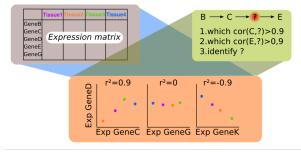
Using gene expression data

Gene co-expression analysis

Use transcriptome analysis to capture relationships between transcripts

Correlation of gene expression levels

=Comparison of their expression profiles



Getting gene expression data

Generate new data

Characterization of new model herbivory model on C. roseus by RNA-seq allowed the discovery of new P450

(日) (同) (日) (日)

ъ

Getting gene expression data

Generate new data

Characterization of new model herbivory model on C. roseus by RNA-seq allowed the discovery of new P450

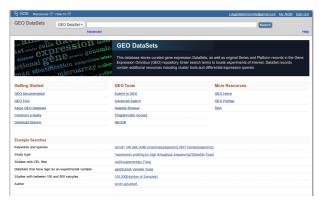
(日) (同) (日) (日)

ъ

Reuse previously published data

Public databases with raw and/or processed expression

data



Public databases with raw and/or processed expression data

ERX1583400: Illumina HiSeq 2500 paired end sequencing

1 ILLUMINA (Illumina HiSeq 2500) run: 34.6M spots, 6.9G bases, 2.8Gb downloads

Submitted by: Universite-Francois-Rabelais

Study: Transcriptomics of Catharanthus roseus upon challenge with Manduca sexta in local and distal leaves. PRJEB14626 • ERP016279 • All experiments • All runs show Abstract

Sample: Catharanthus roseus leaves during folivory

SAMEA4058182 • ERS1229292 • All experiments • All runs Organism: Catharanthus roseus

Library:

Name: A4 Instrument: Illumina HISeq 2500 Strategy: RNA-Seq Source: TRANSCRIPTOMIC Selection: unspecified Layout: PAIRED

Construction protocol: TruSeq_v3

Runs: 1 run, 34.6M spots, 6.9G bases, 2.8Gb

Run	# of Spots	# of Bases	Size	Published
ERR1512373	34,619,625	6.9G	2.8Gb	2017-01-01

Public databases with raw and/or processed expression data

- SRA: 5 petabases in 2017 (all origins combined)
- More than 610,000 RNA-seq accessions (ca. 1 Million accessions of DNA high throughput sequencing)
- 1 sequencing run: an average of 30 Million of bases, file size ca 3 Go

Storage: >100 000 000 Go

Public databases with raw and/or processed expression data

PERSPECTIVE

Big Data: Astronomical or Genomical?

Zachary D. Stephens¹, Skylar Y. Lee³, Faraz Faghri², Roy H. Campbell², Chengxiang Zhai³, Miles J. Efron⁴, Ravishankar Iyer¹, Michael C. Schatz⁵*, Saurabh Sinha³*, Gene E. Robinson⁶*

Table 1. Four domains of Big Data in 2025. In each of the four domains, the projected annual storage and computing needs are presented across the data lifecycle.

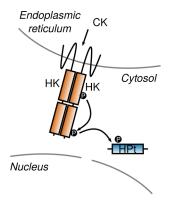
Data Phase	Astronomy	Twitter	YouTube	Genomics
Acquisition	25 zetta-bytes/year	0.5–15 billion tweets/year	500–900 million hours/year	1 zetta-bases/year
Storage	1 EB/year	1–17 PB/year	1–2 EB/year	2–40 EB/year
Analysis	In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis
	Real-time processing	Metadata analysis		Variant calling, ~2 trillion central processing unit (CPU) hours
	Massive volumes			All-pairs genome alignments, ~10,000 trillion CPU hours
Distribution	Dedicated lines from antennae to server (600 TB/s)	Small units of distribution	Major component of modern user's bandwidth (10 MB/s)	Many small (10 MB/s) and fewer massive (10 TB/s) data movement

Work in progress @ EA2106 BBV: complete knowledge on biological pathways

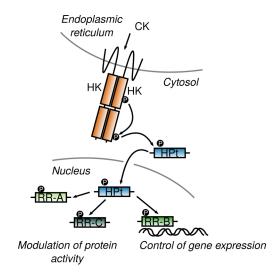
Metabolic pathway: monoterpene indole alkaloids in *Catharanthus roseus*

Signaling pathway: cytokinin (CK) signaling in plants

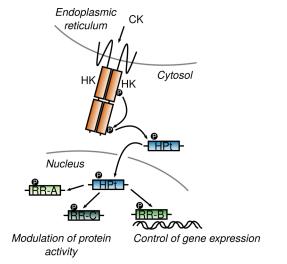
Endoplasmic СК . reticulum Cytosol ΗK HK Nucleus



(=) (



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Association within levels? several proteins in each level **Extract associations with query genes from a global network**

Construction of co-expression networks in *Arabidopsis thaliana*

Reuse of expression data

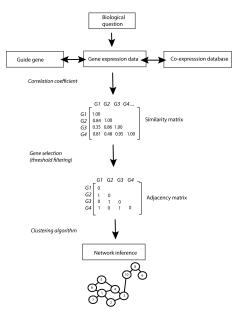
- Microarrays: more than 10,000 samples (obtained and processed with "ArrayExpress" package)
- RNA-seq: more than 1,600 samples downloaded from EBI

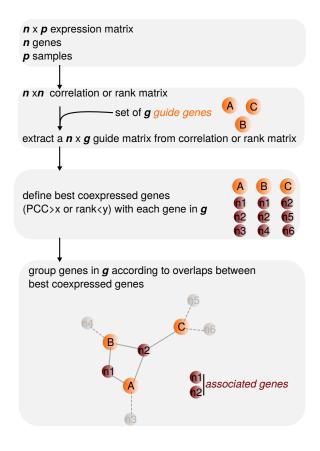
Processing of RNA-seq expression data

- 1. Identify accessions (DRR, ERR or SRR numbers)
- 2. Download raw Fastq files
- 3. Remove low-quality reads with Trimmomatic
- 4. Pseudo-align reads to Arabidopsis reference transcriptome with **Salmon**

5. ca. 1h for a 15 Million of paired-end reads with 5 threads (parallelization with subsets of accessions and array jobs)

Construction of co-expression networks





Construction of co-expression networks in *Arabidopsis thaliana*

Calculate all pairwise correlations between each pairs of genes

- ▶ 33,600 predicted transcripts in A. thaliana
- 33,600 × 33,600 correlation matrix
- Which distance estimator? and for which data?

Construction of co-expression networks in *Arabidopsis thaliana*

Calculate all pairwise correlations between each pairs of genes

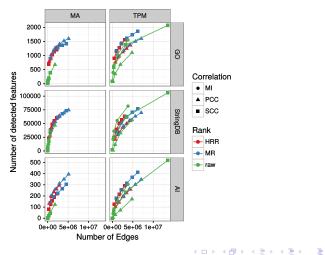
- Development of parallelized tool (mpich2) written in C to compute all pairwise correlations (<15 minutes on 50 cpus)
- Pearson Correlation Coefficient, Spearman
- Ranked Correlation Coefficients (Mutual ranks or Highest Reciprocal ranks)

 Mutual Information (with "Parmigene" R package, in multicore mode)

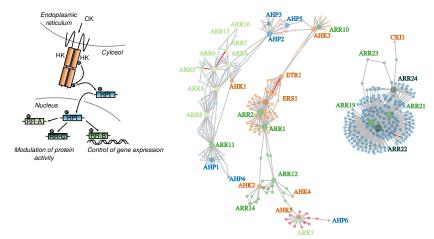
How to estimate the quality of the resulting networks?

Compare transcriptional associations with biologically known assocations

- Gene Ontology
- Protein-Protein Interactions



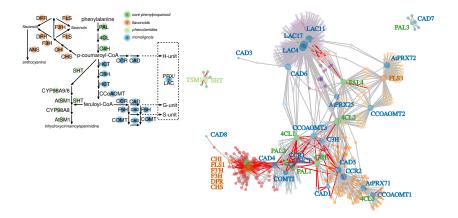
A Cytokinin co-expression network



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

A Flavonoid co-expression network

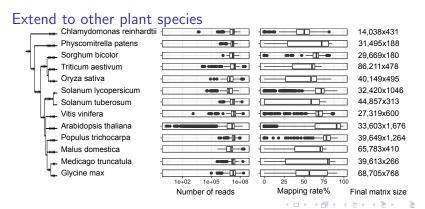
A well known biosynthetic pathway with specific branches



Prospects (1)

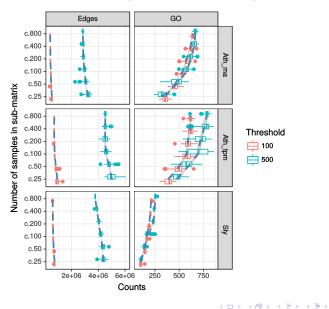
Are predicted associations conserved between plant species?

- Identify available data
- Construction of orthology groups
- Comparison of co-expression networks



Prospects (2)

How much information do we need to capture a relevant transcriptional relationship?



æ

Thank you for your attention

Acknowledgements

- ► EA2106
- Projets Région Abysal et InsectEffect; ARD2020 BioProPharm

(日) (四) (문) (문) (문)

- Fédération Cascimodot pour l'accès à Artemis
- Yann Jullian pour l'aide sur Neptune

Traitement informatique

de larges données

en biologie

6 et 7 J<mark>uillet 2017</mark>

Stratégies d'analyse données omiques Ateliers introductifs **Galaxy** et **Cytoscape**

Jeudi 6 Juillet

Christophe Antoniewski

Institut de Biologie Paris Yves Bigot INRA Nouzilly Nicolas Daccord IRHS Angers Pierre Nicolas INRA Jouy-en-Josas Thibault Guinoiseau INSERM/PST ASB Tours

Présentation Galaxy EA2106 Université de Tours Vendredi 7 Juillet

Olivier Poch CNRS Strasbourg Laurence Liaubet INRA Toulouse Marc Clastre Université de Tours Véronique Brunault INRA Paris

Présentation Cytoscape Yves Vandenbrouck CEA Grenoble

> Inscriptions et détails sur: tild.sciencesconf.org

UFR Sciences Pharmaceutiques Université François Rabelais, Tours PST Amphi A50

