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Retinal Blood Vessel Segmentation (RBVS)

software 3 (SPAMS), is used in all our experiments as a dictionary learning
algorithm. The primal-dual algorithm of Chambolle and Pock [15] is used for
solving the TV-`1 problem (6). The parameters � (Eq. (2)) and  (Eq. (6)) are
set, respectively, to 0.5 and 0.9. Note that, all these values are obtained using a
grid-search and cross-validating on the training sets.

Let TP , TN , FN , and FP respectively denote the number of true pos-
itive, true negative, false negative, and false positive. We use the sensitivity
Sens = TP

TP+FN , the specificity Spec = TN
TN+FP and the accuracy Acc =

TP+TN
TP+FN+TN+FP to quantify the performance of the RBVS methods.

Fig. 1. Segmentation example using SCTC

4.3 Results and Discussions

Our results are depicted on Table 1 along with state-of-the-art results. Fig. 1
illustrates a segmentation example.

3 http://spams-devel.gforge.inria.fr/

Fundus image Segmentation of blood vessels

Why?

• Eye vascularization is an important risk biomarker in a large number of
diseases, e.g. diabetic retinopathy, age-related macular degeneration and
glaucoma.

• The eye shares neural and vascular similarities with the brain. Eye
vascularization offers a direct window to cerebral pathology.
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Learning RBVS

Learning to segment

Assume that we have a training set L = {(Ii ,Si )}1≤i≤n, where

• Ii ∈ RN is a (vectorized) fundus image

• Si ∈ {0, 1}N is an expert segmentation of Ii .

Learning RBVS means using L to construct a mapping S : RN → {0, 1}N that
allows to infer the segmentation of new, unseen fundus images.
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Learning RBVS

Learning to segment

Assume that we have a training set L = {(Ii , Si )}1in, where

• Ii 2 RN is a (vectorized) fundus image

• Si 2 {0, 1}N is an expert segmentation of Ii .

Learning RBVS means using L to construct a mapping S : RN ! {0, 1}N that
allows to infer the segmentation of new, unseen fundus images.
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Learning by Feature Extraction and Empirical Risk
Minimization

Patches

• We work at the level of patches, that is small
√
m ×√m image subsets.

• The training set consists of two matrices:
• X = [x1, . . . , xn] ∈ Rm×n , whose columns are (pre-processed) image patches
• Y = [y1, . . . , yn] ∈ {0, 1}m×n, whose columns are the corresponding expert

segmentations.

Feature Extraction

• Instead of working with raw patches, we try to find good features that will
ease segmentation.

• Feature extraction is given by a function (usually nonlinear) F : Rm → Rp.

• The features of a test patch will serve either to infer the label of its central
pixel, or the labels of all its pixels.

ERM

1. Choose a class H of plausible segmentation functions.

2. Choose an S ∈ H that “works well” on the training set (X,Y), that is, that
minimizes an empirical risk. 4 / 16



This talk: feature extraction by sparse representation in a redundant
learned dictionary
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Sparse Dictionary Learning

Principle

Learn a redundant dictionary (di )1≥i≥p, p > m, such that each training patch
xj ∈ Rm can be sparsely represented as a linear combination of the d′i s.

A Combinatorial Formulation

D∗,A∗ ← min
D∈Rm×p,A∈Rp×n

[
R(X,D,A) = λ

n∑

i=1

‖xi −Dai‖2
2 + ‖ai‖0

]
,

where ‖x‖0 is the number of non-zero entries of x.

A (partially) Convex Formulation

D∗,A∗ ← min
D∈Rm×p,A∈Rp×n

[
R(X,D,A) = λ

n∑

i=1

‖xi −Dai‖2
2 + ‖ai‖1

]
. (1)

In both versions, the columns of D should be constrained to have unit norm.
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An Example of Learned Dictionary
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RBVS by Sparse Coding then Classifier (SCTC)

Training

1. Using Eq. (1), learn a redundant dictionary D that sparsely encodes each
training patch xi .

2. Train a classifier C (e.g. random forest) on the sparse codes (the a′i s) of
each xi in order to infer the label of the central pixel.

Testing

1. Extract all patches of the test image.

2. Represent each test patch x as sparse linear combination of the columns of
D by solving

a∗ ← min
a∈Rp

λ‖x−Da‖2
2 + ‖a‖1. (2)

3. Compute C(a) to obtain the label of the central pixel of x.

Both the feature extraction and the classifier are learned. But feature extraction
has been learned in an unsupervised way.
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RBVS by Joint Dictionary and Classifier Learning (JDCL)

Learning

• Jointly learn
• a dictionary D that sparsely encodes training patches
• and a linear classifier W whose inputs are the sparse codes produced by D:

D∗,A∗,W∗ ← min
D,A,W

α‖L−WA‖2
F + β‖W‖2

F +R(X,D,A),

L = [l1, ..., ln] ∈ R2×n is the label matrix where the vector li ∈ R2 has binary
entries indicating whether the center of the associated patch belongs to a
vessel or not.

Testing

The label l of the central pixel of a query patch x is obtained using the following
equation:

l = argmax
i∈{1,2}

〈δi , W∗a∗〉,

where W∗ is the previously learned classifier and a∗ is the sparse code of x in D∗.
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Multi-Label Classification using a Map Between Sparse
Representations

the RBVS task and evaluated its performance on the DRIVE
dataset.

The rest of the paper is organized as follows. In Sec. 2 we
recall the sparse coding methodology and detail our multi-
label classification method based on generative and discrim-
inative dictionary learning. Section 3 presents our experi-
mental setup, including data preparation, and results on the
DRIVE dataset. We conclude the paper in Sec. 4.

Fig. 1: General idea of the proposed method. � is the dictio-
nary learned on the patch matrix, ⌦ is the dictionary learned
on the associated segmentation matrix, ai is the sparse vector
associated to the data vector xi, bi is the sparse vector asso-
ciated to the segmentation map yi, and P is a linear transfor-
mation that maps each ai to its corresponding bi. Note that
yi is the segmentation map associated with the data vector xi.

2. PROPOSED METHOD

2.1. Dictionary Learning

Given a set of n samples {xi}n
i=1 in Rm, dictionary learn-

ing aims at finding a set of p atoms {di}p
i=1, p � m, on

which the samples can be sparsely represented [6]. Defining
X 2 Rm⇥n as the matrix whose columns are the samples and
D 2 Rm⇥p as the matrix whose columns are the atoms, the
standard formulation for dictionary learning is given by the
optimization problem

D⇤,A⇤  min
D2D,A2Rp⇥n

R(X,D,A), (1)

with

R(X,D,A) =
1

n

nX

i=1

1

2
kxi �Daik22 + �kaik1, (2)

where A = [a1, ...,an] is the matrix of sparse coefficients, �
controls the trade-off between sparsity and data-fidelity and
D = {D 2 Rm⇥p : 8i kdik2  1}.

Given a dictionary D, the sparse coefficients of a vector
x 2 Rm over D are obtained by solving

a⇤  min
a2Rp

1

2
kx�Dak22 + �kak1. (3)

This generative approach has been extensively applied to
samples consisting of (vectorized) patches taken from natu-
ral images. It has lead to state-of-the-art results for common
image restoration problems [6]. This same approach has also
served as a high-level feature extraction stage for many clas-
sification and regression problems. We refer the reader to [11]
for an early example and to [3] where we used a learned dic-
tionary and the sparse codes it yields to train a random forest
classifier for RBVS.

When labeled data is available, supervised (and thus dis-
criminative) dictionary learning algorithms can be developed
[15]. When used for local image analysis [13, 14, 12], e.g. for
texture segmentation, these approaches generally use a patch
to classify its central pixel. In contrast, we propose a multi-
label approach, that is, we classify each pixel of each patch.

2.2. Proposed Method

Our training set is composed of a matrix X = [x1, . . . ,xn],
whose columns are (preprocessed) image patches, and an as-
sociated label matrix Y = [y1, . . . ,yn]. As our RBVS ap-
plication involves binary classification, each yi 2 {0, 1}m

corresponds to the segmentation map of the patch xi 2 Rm.

2.2.1. Learning a Label Dictionary

First, we learn a dictionary on the label matrix by solving

⌦⇤,B⇤  min
⌦2D,B2Rp⇥n

R(Y,⌦,B), (4)

where R is defined in (2).
By choosing a value of � that balances the reconstruction

error and the sparsity of the coefficients, one can write each
segmentation map yi as yi ⇡ ⌦⇤bi, where bi is the i-th col-
umn of B⇤. That is, we only need the sparse vector bi to
approximately recover yi.

2.2.2. Learning a Data Dictionary and a Linear Map

The next phase of the method consists in learning a dictio-
nary for the data matrix along with a linear map allowing to
pass from data representation to the label representation. The
following formulation is used:

�⇤,A⇤,P⇤  min
�2D,

A2Rp⇥n,P2Rp⇥p

R(X,�,A)+↵C(B⇤,P,A),

(5)
with

C(B⇤,P,A) =
1

2
kB⇤ �PAk2F + �kPk2F , (6)

where R is as defined in Eq. (2), ↵ weights the importance
of the mapping function, and � controls the trade-off between
over-fitting and data-fidelity. The first term of Eq. (5) learns a
dictionary over the data matrix along with the sparse matrix,
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The Learning Stage

• Learning a label dictionary Ω∗:

Ω∗,B∗ ← min
Ω∈D,B∈Rp×n

R(Y,Ω,B),

• Simultaneously learning a data dictionary Γ∗ and a linear map P∗:

Γ∗,A∗,P∗ ← min
Γ∈D,

A∈Rp×n,P∈Rp×p

R(X,Γ,A) + αC(B∗,P,A), (3)

with

C(B∗,P,A) =
1

2
‖B∗ − PA‖2

F + β‖P‖2
F .
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The Testing Stage

• Divide the input image into overlapping patches

• For each input patch x ∈ Rm, compute its segmentation map s ∈ {0, 1}m as
follows

s = Tκ(Ω∗P∗a∗),

where a∗ is the sparse representation of x over the dictionary Γ and T is a
threshold transformation with parameter κ.

• Finally, aggregate all the estimates due to the overlap.
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Quantitative Evaluation
• 2 standard datasets for evaluation: DRIVE and STARE
• Pre-processing by grayscale conversion and histogram equalization
• 8× 8 patches
• Training with 25000 patches
• Evaluation metrics:

Sens =
TP

P
, Spec =

TN

N
, Acc =

TP + TN

P + N
.

while the second term learns a linear transformation that can
efficiently map each sparse vector ai representing the patch
xi to a sparse vector bi representing the segmentation map
yi. Recall that yi ⇡ ⌦⇤bi and bi ⇡ P⇤ai, thus yi can be
computed from the sparse vector of its associated data vector
xi using yi ⇡ ⌦⇤P⇤ai.

It is worth noting that Eq. (5) can be re-written as

D⇤,A⇤  min
D,A

R(Z,D,A), (7)

where R is as defined in (2), Z = [X>,
p

↵
2 B⇤>]> and D =

[�>,
p

↵
2 P>]>. Then, the regularization term over P can be

dropped since the columns of D are `2-normalized. This re-
formulation provides a way to solve Problem (5) using recent
efficient algorithms for dictionary learning.

2.2.3. Testing

Finally, the segmentation y of a query patch z is obtained
using the following equation

y = T(⌦⇤P⇤a⇤), (8)

where a⇤ is the sparse representation of z over the dictionary
�, T is a threshold transformation with parameter , and P⇤

is obtained from Eq. (5).
In order to segment a complete image, we apply the test-

ing phase to all patches, with a given overlap. This leads to
multiple outputs for each pixel. The final stage consists in ag-
gregating all the outputs and thresholding to get binary values.
This is detailed in the next section.

3. EXPERIMENTS

We applied the proposed method to the task of RBVS. The
evaluation is performed on the publicly available and popular
DRIVE dataset [8] consisting of 40 images divided in two
groups (train and test sets).

3.1. Data Preparation

The DRIVE dataset contains RGB fundus image of size
565⇥584⇥3. The field of view (FoV) of each image is also
provided. We consider the gray-scale version of the images,
and apply the Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) to enhance the contrast. To cover a large
number of cases, we extracted 25000 patches from each of
20 training images (with a balanced number in each class).
Patches of size 8⇥8 provided the best results. All patches are
further `2-normalized.

3.2. Experimental setup

We optimize the two principal equations of the method (i.e.
Eqs. (4) and (7)) using the online dictionary learning algo-

rithm of [7] implemented in the sparse modeling software1

(SPAMS). The parameter �, that weight the sparsity factor
of the dictionary learning procedure, is experimentally set to
0.05 in all the experiments. This low value enforces sparsity
while providing a small reconstruction error. The number of
atoms, p, for both data and labels dictionaries is set to 200.
We use a total of 10000 iterations for each dictionary. It takes
about 5 minutes for each on a 6 core CPU with 2.6 GHz for
each core.

3.3. Testing setup

At testing time, the segmentation map of overlapping patches
with stride 1 are computed and averaged on each pixels. We
applied the threshold operation after aggregating all the seg-
mentation map. In that way, the threshold will have more in-
formation about the entire image, instead of thresholding each
segmentation map. We use Otsu’s thresholding method. The
threshold parameter for this method is the number of bins,
which is experimentally set to 200. As performed in [3], we
post-process the thresholded image by minimizing its total
variation with an additive `1 fidelity term in order to reduce
impulsive classification noise.

3.4. Results

Let TP , TN , N , and P respectively denote the number of
true positive, true negative, negative, and positive pixels. We
use the sensitivity Sens = TP

P , the specificity Spec = TN
N

and the accuracy Acc = TP+TN
P+N as performance metrics, as

commonly done for RBVS.
Our quantitative results are depicted on Table 1. Beside

being better than recent works on dictionary learning, the
method outputs competitive results compared to deep learn-
ing based ones. Figure 2 illustrates some qualitative results
on the DRIVE test set.

Methods Spec Sens Acc

This paper 96.78 80.56 95.34

Javidi et al.[2]** 97.02 72.01 94.50

SCTC [3]** 95.55 83.49 94.48

Liskowski et al.[5]* 96.73 84.60 95.07

Dasgupta et al. [4]* 98.01 76.91 95.33

*deep learning methods —— ** dictionary learning methods

Table 1: Our results on DRIVE against the state-of-the-art.

1http://spams-devel.gforge.inria.fr/
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Qualitative Results

(a) Predictions

(b) Ground-truths

Fig. 2: Qualitative results of the proposed method.

4. CONCLUSION

We presented a novel retinal blood vessel segmentation
method that takes advantage of the powerful feature ex-
traction power of dictionary learning techniques. In contrast
with other dictionary learning algorithms for local image
analysis, our method relies on a multi-label approach, that is,
it classifies each pixel of each input patch. Our results on the
DRIVE dataset show that it is competitive with recent state-
of-the-art methods, including those based on deep learning.
Future work will concentrate on a thorough evaluation of the
performance method on different datasets.

5. REFERENCES

[1] Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B.,
Rudnicka, A., Owen, C.,Barman, S.: Blood vessel seg-
mentation methodologies in retinal images - A survey.
Computer Methods and Programs in Biomedicine, 108
(1), 407–433 (2012).

[2] Javidi, M., Pourreza, H.R., Harati, A.: Vessel segmen-
tation and microaneurysm detection using discrimina-
tive dictionary learning and sparse representation. Com-
puter Methods and Programs in Biomedicine 139, 93–
108 (2017).

[3] Birgui Sekou T., Hidane M., Olivier J., Cardot H. Seg-
mentation of Retinal Blood Vessels Using Dictionary
Learning Techniques. In: Cardoso M. et al. (eds) Fe-
tal, Infant and Ophthalmic Medical Image Analysis. FIFI
2017, OMIA 2017. Lecture Notes in Computer Science,
vol 10554. (2017).

[4] Dasgupta, A., Singh, S.: A fully convolutional neural net-
work based structured prediction approach towards the
retinal vessel segmentation. In: IEEE International Sym-
posium on Biomedical Imaging (ISBI), 248–251 (2017).

[5] Liskowski, P., Krawiec, K.: Segmenting Retinal Blood
Vessels With Deep Neural Networks. IEEE Trans. Med.
Imaging 35 (11), 2369–2380 (2016).

[6] Elad, M.: Sparse and Redundant Representation.
Springer New York Dordrecht Heidelberg London
(2010).

[7] Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online Learn-
ing for Matrix Factorization and Sparse Coding. Journal
of Machine Learning Research 11, 19–60 (2010).

[8] Staal, J., Abrmoff, M.D., Niemeijer, M., Viergever, M.A.,
Ginneken, B.V.: Ridge-based vessel segmentation in
color images of the retina. IEEE Transactions on Medi-
cal Imaging, 501–509 (2004).

[9] Maji, D., Santara, A., Mitra, P., Sheet, D.: Ensemble of
deep convolutional neural networks for learning to de-
tect retinal vessels in fundus images in arXiv preprint
arXiv:1603.04833 (2016)

[10] Lahiri, A., Roy, A. Guha, Sheet, D., Biswas, P. K.: Deep
neural ensemble for retinal vessel segmentation in fundus
images towards achieving label-free angiography in Engi-
neering in Medicine and Biology Society (EMBC), IEEE
38th Annual International Conference of the (2016)

[11] Raina, R., Battle, A, Lee, H., Packer, B, Ng, A.Y.: Self-
taught learning: transfer learning from unlabeled data in
Proceedings of the 24th international conference on Ma-
chine learning, 759–766 (2007)

[12] Fawzi, A., Davies, M., Frossard, P.: Dictionary learning
for fast classification based on soft-thresholding in Inter-
national Journal of Computer Vision, Vol. 114, 2-3, 306–
321 (2015)

[13] Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.:
Discriminative learned dictionaries for local image anal-
ysis in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on

[14] Mairal, J., Ponce, J., Sapiro, G., Zisserman, A. and
Bach, F.: Supervised dictionary learning in Advances in
neural information processing systems 2009

[15] Gangeh, M. J., Farahat, A. K., Ghodsi, A., Kamel, M. S.:
Supervised dictionary learning and sparse representation-
a review in arXiv preprint arXiv:1502.05928 (2015)

14 / 16



Conclusion

• We proposed a learning approach for retinal blood vessel segmentation.

• We leverage sparsity as a cue to extract features.

• We discussed a variant where we learned feature extraction and a linear
classifier jointly.

• We introduced another variant where we learned data and label dictionaries
and a coupling linear mapping.
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Thank you for your attention!
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