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Al is a recent invention
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History

Before 1956, some visions: Alan Turing, formal neurons, robots Al as a mean

1956:
196x:
1968:
1969:
1973:
198x:
199x:
2000:
2010:

Dartmouth workshop, first occurence of the term Al Al as a goal
Problem solving, games, natural langage

2001 a space odyssey, HAL

Perceptrons (Minsky-Papert), kills research on NNs

Lighthill Report, first AI Winter

Prolog+FGCS; Experts Systems; Checkers (from Samuel to Chinook)

Second Al Winter, but Deep Blue (chess) and first convolutional networks (CNNs)

first Web applications (data) "5 ‘
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Deep learning (triumph of CNNs, AIphaGO, )

2018+: toward a third AI Winter?



History

Before 1956, some visions: Alan Turing, formal neurons, robots Al as a mean

Can Machines Think?

The problem is mainly one of programming. [...] brain estimates: 107 to 10'° bits. [...] | can produce about a
thousand digits of programme lines a day, so that about , working steadily through the ,
might accomplish the job, if nothing went into the wastepaper basket. Some

How?

by (...) mimicking , we should hope to modify the machine until it could
be relied on to produce definite reactions to certain commands.
One could carry through the organization of an intelligent machine with only two
interfering inputs, one for , and the other for




History

Before 1956, some visions: Alan Turing, formal neurons, robots

1956: Dartmouth workshop, first occurence of the term Al

1956 Dartmouth Conference:
The Founding Fathers of Al

/

John McCarthy

Marvin Minsky Claude Shannon Ray Solomonoff

Alan Newell Herbert Simon Arthur Samuel

(. ¥
=)

And three others...

Oliver Selfridge
(Pandemonium theory)

Nathaniel Rochester
(IBM, designed 701)

Z Trenchard More
(Natural Deduction)

Al as a mean

Al as a goal

We propose a study of artificial intelligence [..]. The
study is to proceed on the basis of the conjecture that
every aspect of learning or any other feature of
intelligence can in principle be so

that a machine can be made to it.

The vision : reasoning is a sequence of logical
operations that a computer can reproduce

Goal : A General Problem Solver
(aka 2000+ : Artificial General Intelligence)
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Have machlnes fhat accompllsh tasSks related to (human)
intelligence - possibly betterthan humans
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~Definition?

Have machlnes fﬁataccor* pllsh tasks related ’eo (human)
intelligence - possib’, | et erthan Humans |
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Have machi r{és:fﬁat ‘a°'c¢c.omf|5"li._s'h;ta§ks no‘hjac:-hi.ﬁ,e ever did

e Jean-Louis Lauriére, 80s.
e Philippe Kahn,. late 80s
e Gérard Sabah, 2017
o ™ (rapport de 'OPECST)



~Definition ?

Raisonnement Logique

... a set of techniques, each with its
own objectives, more precise than
«intelligent reasoning»

Académie des Technologies 2018

Repreésentation Connaissances

Planning et Navigation

Traitement Langage Naturel

Deep Learning

Perception
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Autonomy and Robotics

*DARPA Autonomous Vehicle Challenge

o in the désert, then in urban context

LeNet (Deep Neural Network) outperforms all challengers from Computer
Vision in image recognition

*DARPA Rescue Challenge robots who drive, walk in chaotic context,
climb stairs, repair broken machines, etc

**Psibernetix shoots down (in simulation :-) the best US Air Force pilots
o genetic algorithms and fuzzy logic ... on a Raspberry Pi!

Intel bought Israeli company MobilEye for 15 billions

**Boston Dynamics robots better and better performing
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Games

**IBM Watson beats best human players at Jeopardy

o NLP + web search + evaluation, 3 seconds on HPC
Deepmind human performances on some (not all) Atari video games with
Deep Reinforcement Learning

o Input: pixels; Output: joystick

Deepmind AlphaGo beats World Champion of GO with a mix of
Supervised and Reinforcement Learning

Deepmind AlphaZéro beats AlphaGo 100-0 using only Deep
Reinforcement Learning and self-plays

o about 2 stones ahead of best human

o AlphaZero can also be trained for other games (e.g., chess)
*Libratus crushes the best Poker players of the world

o Reinforcement Learning and Bayesian techniques



NLP and and disability support

Microsoft Skype Translator translates several languages in real time with
Deep Learning. Similar performances for Google Translate, Pilot, ...
Apple Siri, Microsoft Cortana, Amazon Alexa personal assistants use
Speech Recognition and (some) Automated Reasoning

**Google Knowledge Graph uses semantics to better structure the results
of queries

Microsoft translates from Chinese to English as good as human translators
o with a double Deep Neural Network

Ava, RogerVoice help deafs and hearing-impeached (subtitling,
telephone,...)

Facebook can label photos, and describe them to blind people
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Artificial Intelligence is (Dcep) Machine Learning

.

What has changed :
e Data Deluge avent of WWW
e - Moore law or continuation

e New algorithms or better understanding of old ones
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Learning from examples recognition tasks
‘e~ Supervised all examples are labélled
e Semi-supervised some examples are labelled
e Unsupervised no example is labelled

Reinforcement Learning sequential decision making
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Learning from examples recognition tasks
KE 0) all examples are labélled

e Semi-supervised some examples are labelled

e Unsupervised no example is labelled

Reinforcement Learning sequential decision making
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Supervised Learning
A toy case-study

e One example = (x,,X,, ¥), where is the (red or blue here)
e Goal:finda f(x,,x,) that separates the labels



Supervised Learning
A toy case-study

e One example = (x1,x2, y), where is the (red or blue here)
e Goal:finda f(x,,x,) that separates the labels
e allowing to correctly label future unlabelled example from (x,,x,)



Supervised Learning
A toy case-study

e Forinstance, linear models are defined by 3 parameters

2\



Supervised Learning
A toy case-study

e Forinstance, linear models are defined by 3 parameters
e And we look for the parameters that best separate the data
e Thisis the

+ x, + x2-0



Supervised Learning
A toy case-study

e More complex models have more parameters



Supervised Learning
A toy case-study

e More complex models have more parameters
e with the danger of



Supervised Learning

A zoology of models
Polynoms
Bayesiens Networks
Decision trees and Random Forrests
Support Vector Machine (kernel machines)

neuron

1 W,
ij

EW 1

=W,
b)
L

i

linear
function

A network of neurons
One neuron Parameters are the
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Deep Neural Networks

Learning Phase
Gradient aka
e Present the examples 1 by 1

o or mini-batch by mini-batch

° pass: Compute the
e.g., L= X |y(x;x,)-NN(x,x,)[*
° pass: Compute V L (chain rule)

e Modify the weights w; from V L
to decrease of the loss
e Loop

Recognition Phase aka Inference
Present an unlabelled example, the output of the network is the predicted label



Deep Neural Networks

A Deep (layered) Neural Network is
a sequence of



Deep Neural Networks

A Deep (layered) Neural Network is
a sequence of

L4 .( D
simple features



Deep Neural Networks

A Deep (layered) Neural Network is
a sequence of

ol -
complex features
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End-to-end Learning

Features and Classifier are learned together CAT



C1. feature maps . - S4:f. maps 16@5x5

S2: 1. maps | g ‘ C5: layer gq.
6@14x14 | | pe— 420 v F6: layer QUTPUT

6@28x28

— |
Full conAection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection




Elephants Chairs
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Deep Learning

Better than human learning

ILSVRC Top 5 Error on ImageNet

w
o

cv

N
wv

Deep Learning

N
o

Human

ey
o

Top-5 Error Rate (%)
S

v

o

Human

2010 2011 2012 2013 2014 Human 2015 2016
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m&n max V(D,G) = Egppu(@)log D()] + E,p_ (»)[log(1 — D(G(2)))]




GANS

Image Generation

Goodfellows et al., 2016



woman
with glasses without glasses without glasses

woman with glasses







Deep Supervised Learning

Outstanding performances

... in well-defined domains

o Image recognition

o Action identification in videos
o Image captioning

o Natural Language Processing
o Automatic translation/subtitling
Generative models (GANSs)

o lots of (fun) applications

m e.g., style transfer
Latent representations
Differentiable programming
But ...

.
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Huge computational cost

Loads of data, Tons of weights
e Ecological disaster
e |rreproducible results

‘7 ExaFLOPS 20 ExaFLOPS 100 ExaFLOPS
60 Million Parameters 300 Million Parameters 8700 Million Parameters

2015 - Microsoft ResNet 2016 - Baidu Deep Speech 2 2017 - Google Neural Machine Translation
Superhuman Image Recognition Superhuman Voice Recognition Near Human Language Translation



Meta-cost

Hyperparameters tuning
Loss function
Network topology
Activation function
Batch size
Optimizer
o and its parameters (e.g., learning rate)
Initialization
Dropout or not dropout

No principled rules



Small Data

Deep Networks need huge datasets

Pre-trained network

Data augmentation
One-shot learning

Transfer Learning with Domain Adversarial NNs
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Adversarial examples

Noise at test time

— 80 Mg g

I%

- SeRy

Image + chosen Noise — Ostrich Image + random Noise — OK
Szegedy et al.,2014
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Adversarial examples

- One-pixel attacks

S ]

Planetarium Comforter

Jellyfish Whorl Su et al.,2017



Adversarial examples

Sparse attack

original { »o-norm {p-norm (sparse) sparse perturbation

Cow (a) classified as “Traffic Light” (b-c)

Shafahi et al.,2018

-‘

J

All classified as “Speed limit 45”
under various angles/distances

Eykholt et al.,2017



B classified as turtle [ classified as rifle
[l classified as other




"it was the
50 best of times,
\ it was the
worst of times"

"it is a truth
universally
acknowledged
that a single"




Adversarial examples

A never-ending (?) arms race

e Principled attacks are proposed
e Principled defenses ... to these attacks
e But are broken by stronger attacks ...

But

e Adversarial examples are inevitable
e An intrinsic property of high-dimensional inputs



Unseen contexts

Out of sample examples

A cow doesn’t go to the beach

Bottou et al., 2017



Target instances from Fish class

Poison
instances
made for
fish class
from dog
base
instances

Target instances from Dog class

Poisons
made for
dog class
from fish
ses




Validation of DNNs

An experimental science
No formal validation of learned models
Completeness issue for statistical validation

Need to validate the training data
o Traceability

Guaranteed bounds
Toward formal proofs for Al
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0]i\:17)y) Explainable Al — What Are We Trying To Do?

Today

Why did you do that?

=EE" -8
EB-' » Why not something else?
mall WET Learning This is a cat - When do you succeed?
e (p=.93) - When do you fail?
] B Process ‘
HE<BIr = When can | trust you?
e » How do | correct an error?
Training Learned Output User with
Data Function a Task
* | understand why
s ) This is a cat: « | understand why not
Ne"Y P ¥t 7 P oy .gnhdaf:l;l:;s whiskers, - | know when you’ll succeed
Learning [ I’-i-"i"-‘.” 1'.’.1’\ B banthle fatin: - | know when you’ll fail
0% &b b b N S « | know when to trust you
Process PRI ila A I k hen to trust
50 e e ok e e | « | know why you erred

Training Explainable Explanation User with
Data Model Interface a Task




Explainability and Interpretability

Learned models are black boxes
lll-defined and subjectives concepts
Depends on the type of model
o moderately: decision trees are ok
o ... not random forests

The debate
How much are you ready to lose in accuracy?
Cite the nearest known examples e.g., influence fns,
Well, we trust our doctor, don’t we ...



150 million barrels

00 million barrels

50 million barrels

US crude oil imports from Norway

0 million barrels

1999

1999

2000

2000

US crude oil imports from Norway
correlates with

Drivers killed in collision with railway train
Correlation: 95.45% (r=0.954509)

2001 2002 2003 2004 2005 2006

2001 2002 2003 2004 2005 2006

-@- Railway train collisions == US crude oil imports from Norway

2007

2007

2008

2008

2009

2009

100 deaths

80 deaths

60 deaths

SuoIs|(|0d ules) Aemjiey

40 deaths

tylervigen.com



Correlation vs causality

Supervised learning doesn’t make a difference

e “What if’ scenarios needed for decision making
e Causality usually from common sense
e Learn from data?



Pairwise causality

Are A and B related by

some causality dependance?

B 4







Life length

Chocolate




Life length

Chocolate
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Feature maps

Convolutions Subsampling Convolutions Subsampling  Fully connected



True network (G ;)

Observed network (G ;)

Transitive closure

(TC)

Network deconvolution

—> Direct effects
----» Indirect effects

eof rotating scl




Real Data
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Filters  Generators Discriminator HOP, ¢ ) + n;E; + b,‘> + B;



SAM

Loss function d sparse causal mechanisms vs shared discriminator
o Adversarial learning

Li = Ex; x,;[log D(xi, %) ] + Ee; ;[ l0g(1 — D(fi(ei, x\i) %)) ]

o + L1 regularization on filters (— sparsity)

Discussion
e No combinatorial search
e Possible cycles: genuine, or non-identifiability

Still far from a unified accepted framework
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Fairness

Biased data lead to biased models and decisions
o Predictive Justice, Bank loans, ...

No formal definition of fairness
o In fact, too many!

Hiding discriminative variables insufficient

Beyond scientific research

Recognized labels
Discrimination Impact Assessment?



Transparency

Mandatory for societal acceptance

e Open Source not enough
o Open Data
o controlled experiments

e Explainability
e See the TransAlgo platform



Trustable Good Al

Beyond research issues

e Scientific and legal advances
o Human in control
o Accountability

e FEthical rules
o By design
m Public debate, CCNE-bis, ...
o Control

m Citizen crowd control, independent institution, ...

Without trust, societal Al winter ahead
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Deep Learning

Missing Scientific Issues
Unsupervised/predictive learning
Reinforcement learning

The main advances
Discover relevant latent representations
Differentiable programming

The debate
Are handcrafted (explainable) features useless?
What does the learnt representations mean?
Any invariance/physical properties in these representations?



Other approaches

Trendy Scientific Issues
Probabilistic Programming
Artificial General Al

The debate about Machine Learning
Machine Learning
Symbolic Al

In France and in Europe

Beyond the scientific debate, hidden political agendas



The singularity

Jean-Gabriel Ganascia

When intelligent machines take over the world

Whereas the short-term impact
of Al depends on who controls it
the long-term impact depends on
whether it can be controlled at all.
Stephen Hawking 1er mai 2014

but also Elon Musk, Bill Gates, ...

Jean-Gaoriel Ganascna
lemythe
dela Singulanité

Faut-il aaindre
I'irtdligence artificele?




The singularity

When intelligen@aqhﬁl%ytake over the world

e weak Al: can do a single task Al = mean
e strong Al (Artificial General Intelligence) Al = goal

e T[oday, only exist weak Als

o even AlphaZéro

o even automatic translators
o even personal assistants
O



Toward an AGI ?

What seems 1o be crucially missing

Intrinsic motivation
Embodiment
Common sense
Self-consciousness

On-going (see e.g., Pierre-Yves Oudeyer)

On-going (see _e.g., Rolf Pfeifer)



Other approaches

Trendy Scientific Issues
Probabilistic Programming
Artificial General Al

The debate about Machine Learning
Machine Learning
Symbolic Al

In France and in Europe

Beyond the scientific debate, hidden political agendas



- Collaboration, not Competition




