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Background: porous media modeling

Target:
" Understand and model complex physics of o ReseAuoE Ricaipiation de chileir

pour les procédes industriels
et/ou le chauffage via un
échangeur de chaleur

flow and transport in reservoirs (geothermal
energy, nuclear wast storage, water
resources, oil and gas recovery, CO,
sequestration, ...),

" Replace/complement lab-scale experiments
(permeability...)

Challenges:

" Multi-scale problem,

" Multiphase flow,

" Fractured/damaged media,

" Thermal processes,

" Phase change

" Bio-geochemistry,

= Evolution of the pore structure,
" Mechanics,

" Dispositif intégré dans le puits
permettant le captage et la
dissalution du CO2*

“Technologle brevetie, propriété de
Fi-innevation, inc. (LSA)



C
572 1300 O

.‘_MOIE ules
o A Y .

(Adapted from Buchgraber 2012)

Multi-scale modeling
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Discret vs continuum

direct modeling

pp
Vg
Control volume Value averaged over
the control volume
for every point of the domain
fluid OR solid fluid AND solid
ov K
pg+pv.v'v: —Vp + pg + uV3v V = —E.(VP—pfg)



Why working at the pore-scale?

Understand Characterize




Digital Rock Physics

Image of core, plug or cutting Segmented pores/minerals in image Computation of rock properties

(source: GeoDict)

Geometrical parameters Flow Parameters Electrical parameters Mechanical parameters
m Porosity m Permeability m Formation factor m Elastic moduli

m Percolation m Multi-scale/ phase flow m Resistivity index m Stiffness

m Surface area ™ (fﬂpillary pressure curve ® Saturation exponent m In-5itu conditions

m Tortuosity m Cementation exponent



Advantages of using digital experiments

* Non-destructive,
e Sensitivity analysis,

» Laboratory hazards such as leaks or temperature variations are simply
removed,

e Can reach pressure and temperature conditions that are difficult to
consider in the lab without the use of dedicated equipment,

* Moreover, the information resulting from these simulations is spatialized
(distribution of phases, velocities or stresses) which gives a greater
flexibility of post-treatment whereas the classical petrophysical
experiments only give access to macroscopic data.



Challenges

Solve the physics: Interpret the results:

» Define correct models  Link with mascroscale properties
» Develop solution algorithm
* Model validation




Direct Numerical Simulation technigues

~

Navier-Stokes on Eulerian Lattice Boltzmann Method
grids (CFD) (LBM)
» Solve Navier-Stokes equations on a * Solve the discrete Boltzmann equation
Eulerian grid, instead of Navier-Stokes,
» Differential operators discretized with * The nature of the lattice determines
FVM, FDM or FEM, the degree of freedom for the particle
« Nowadays, all the CFD softwares are movement,
efficient, robust and parallelized. » Easy to program, massively parallel,

* No limitation due to Knudsen number.

4 - Directly deal with the real pore structure geometry, A
- Can be used to investigate the physics
- More computationally expensive than PNM,

9 - Efficient multiphase solver are still in development. Y




Application: compute the permeability of a sandstone

Kij = plvi) | — i=1z,1,2

Digital rock obtained from microtomography imaging,
Grid the pore-space,

In CFD simulations, the results may be very sensitive to
the grid quality. At least 10 cells are required in each
pore-throat,

The grid quality is even more important when dealing with
multiphase flow (refinement near the walls),

Solve steady-state Stokes equations (SIMPLE algorithm
with OpenFOAM).
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Challenge 1: How to account for sub-voxel porosity?

... for example when imaging a source rock including micro-cracks and nanoporosity

A few nanometers

<

Source: Falk et al., 2015

Kerogen and hydrocarbons
(oil windows)
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(red = non-connected porosity, blue = connected)

* Atthe SEM scale, only the larger pores are captured
* The nanoporosity is not resolved in the image,
* But hydrocarbon molecules are transported through the nanoporosity...

'Heath et al., Pore Networks in continental and marine mudstones: Characteristics and controls on sealing behavior Geosphere, 2011, 7, 429 — 454
°Falk et al., Effect of Chain Length and Pore Accessibility on Alkane Adsorption in Kerogen, Energy & Fuels, 2015, 29, 7889-7896 11



Darcy-Brinkman-Stokes equation

control volume, V

Filtering approach
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The Darcy-Brinkman-Stokes'2? equation allows a single domain formulation

Vanishes in the void space

Ef Dominant in the porous region

'Brinkman A Calculation of The Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles Appl. Sci. Res. (1947)

2Neale and Nader Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium. (1974)

3Soulaine and Tchelepi Micro-continuum approach for pore-scale simulation of subsurface processes Transport in Porous Media (2016)
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Impact of sub-voxel porosity in microtomography images!

Cube 300 x 300 x 300 ,
3.16 um = synchrotron resolution
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throat diameter (um)
sample 1 2 3
Sub-grid model: K (mD) 518 534 341
* Sub-voxel porosity from the grayscale,
K- (mD) 211 475 305
« Local permeability from Kozeny-Carman (-59%)
combined with the image resolution,
K+ (mD) 913 804 (673/ )
+97%

'Soulaine et al. The impact of sub-resolution porosity of X-ray microtomography images on the permeability Transport in Porous Media (2016)
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Challenge 2: hydro-geochemical coupling

.-(2012)

Landrot

quartz [ chiorte I iiiteimica Tmm

kaolinite B ite'smeciite B i oside B Feoxide

* Darcy scale = averaged equations with averaged properties (permeability, surface area...)
* How does the permeability evolves when the pore-structure changes due to the dissolution/precipitation?

* What is the surface area accessible to the acid component? Complex interplay of diffusion, convection,
reaction

Landrot, G., J. B. Ajo-Franklin, L. Yang, S. Cabrini, and C. I. Steefel (2012). Measurement of accessible reactive surface area in a sandstone, with application
to CO, mineralization. Chemical Geology 318, 113-125.



Calcite dissolution: Simulation vs Experiment

* Dissolution of a calcite crystal in a micro-channel (Sophie Roman, Wen Song and Tony Kovscek,
Stanford University),

* Acquisition of a high resolution dataset to compare with numerical simulations.
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1Soulaine et al., Mineral dissolution and wormholing from a pore-scale perspective, Journal of Fluid Mechanics 827 (2017)
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Dissolution at the core-scale

/

* Core-scale model (Darcy formulation)
* Diffuse Interface Model (DIM)

* Now the porous region has porosity and permeability
(g,=0.1+x3%andk,=10"m? £10 %)

Daccord and Lenormand (1987)

'Soulaine and Tchelepi Micro-continuum approach for pore-scale simulation of subsurface processes Transport in Porous Media (2016)
2Daccord, G. and Lenormand, R. Fractal patterns from chemical dissolution. Nature, 1987, 325 16



Challenge 3: two-phase flow in porous media

Immiscible interface

Particularity of multi-phase flow

Navier-Stokes equation in each phases

Continuity of the tangential component of the
velocity at the fluid/fluid interface

Laplace law for a surface at the equilibrium

1 1
o S
P f0(31+32)

Surface tension
(N/m)

Contact line dynamics at the solid surface

Surface tension is the elastic tendency of a fluid
surface which makes it acquire the least surface
area possible

Sophie Roman (Univ of Orléans, FR)

The contact angle quantifies the wettability affinity
of a solid surface by a liquid

B E

Zhao et al. (2016), PNAS

i
6=150° 6=90° 0=7°
non-wetting wetting

The displacement of a wetting fluid by a non-wetting
fluid (drainage) is different than the displacement of a
non-wetting fluid by a wetting fluid (imbibition)
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The Volume of Fluid (VOF) technique
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Single-field equations?

pg—? +po.Vo=-Vp+pg+V.u (V’U 4! V’U)

Continuum Surface Force (CSF)?

Va
F.—=agV. ( ) Va
Vol

Graveleau et al. 2017

"Hirt, C. & Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries Journal of Computational Physics, 1981, 39, 201 - 225
2Brackbill et al. A continuum method for modeling surface tension Journal of Computational Physics, 1992, 100, 335 - 354 18



Summary

* An on-going revolution in the porous media community!

* Digital Rock Physics technologies aim at replacing or at
least complement standard petrophysical experiments

e Still a lot of interesting challenges to solve (coupled
physics, solution algorithm efficiency, HPC....)
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hank you for your
attention!

www.cypriensoulaine.com
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