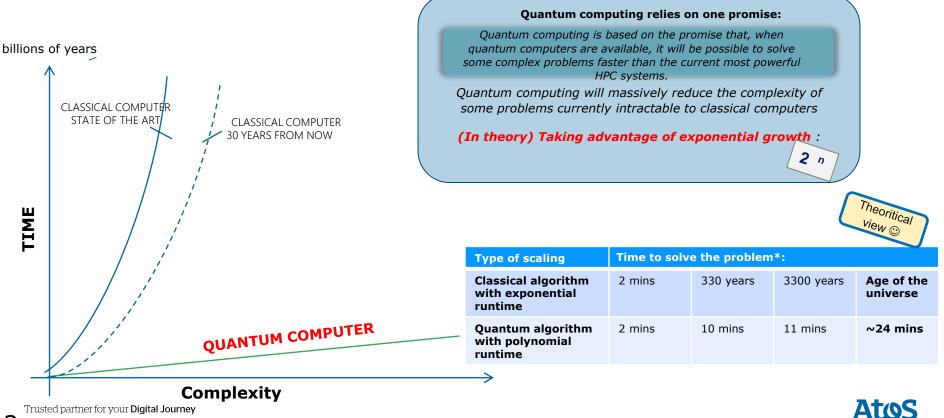
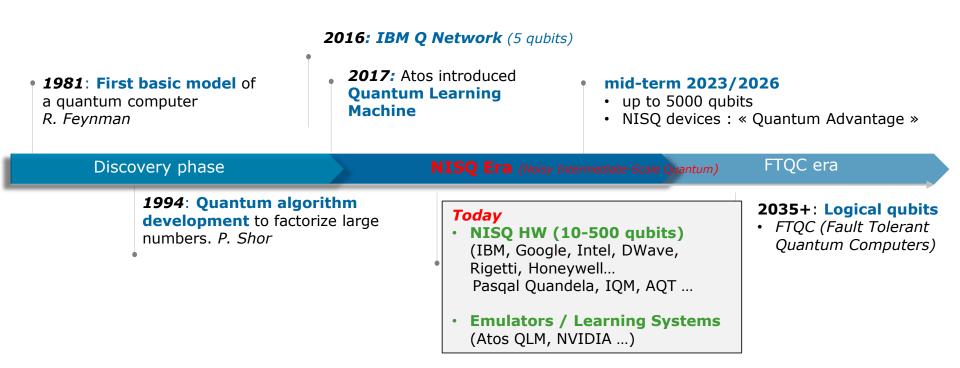


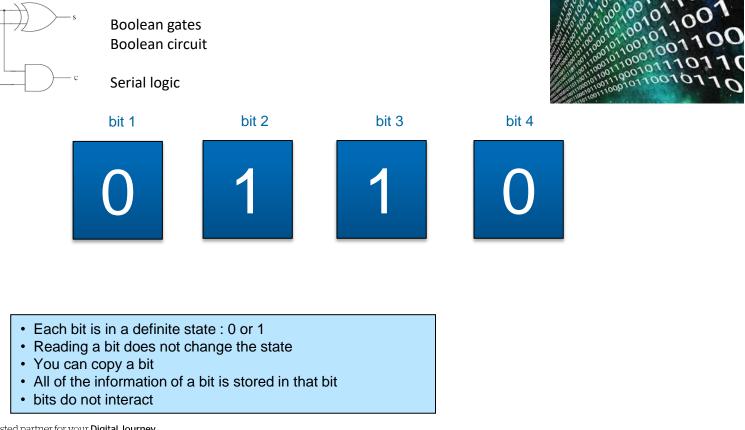
Quantum Computing Introduction & State of the art


Orléans - 09.12.2022

Olivier Hess Atos Quantum Computing Leader - France olivier.hess@atos.net



Classical computing "limitations"

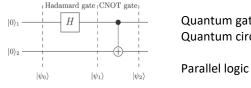


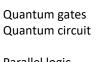
2

Quantum Computing : Where we are

Classical Information

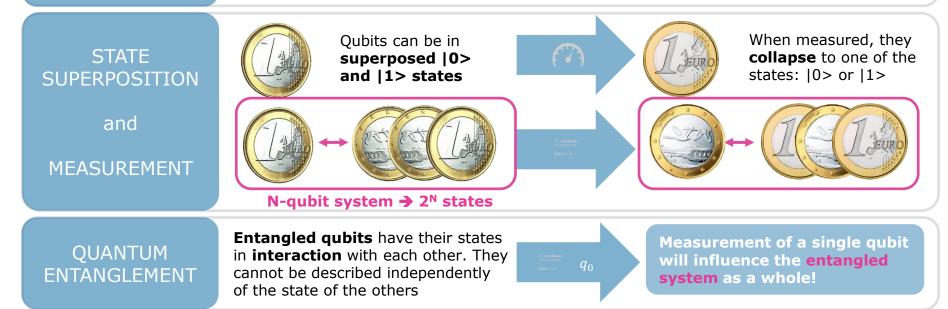
. . . .


Quantum Computing A few fundamental notions

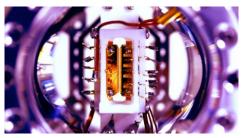

✓ Basic unit of quantum

✓ Two-state quantum-mechanical

information


system

- ✓ In QC, the **computational power** of a system is expressed in # of qubits
- \checkmark **N qubits** \rightarrow 2^{*N*} information



QUANTUM BIT

`OUBIT"

Quantum Computing Challenges (1/3) : making Qubits

Credit: S. Debnath and E. Edwards/JQI Monroe Group, University of Maryland/JQI

Photons

Image from the Centre for Quantum Computation & Communication Technology, credit Matthew Broome

Neutral Atoms

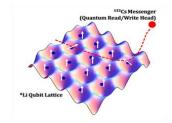


Image from Cheng Group, University of Chicago

Solid-state defects

NV Centers, Phosphorous in Si, SiC defects, etc.

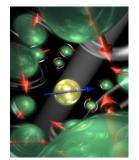
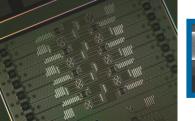
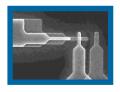
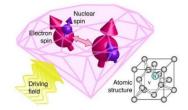
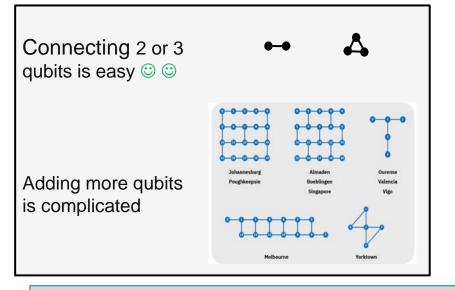
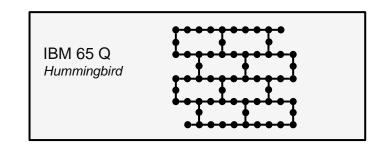





Image from Hanson Group, Delft

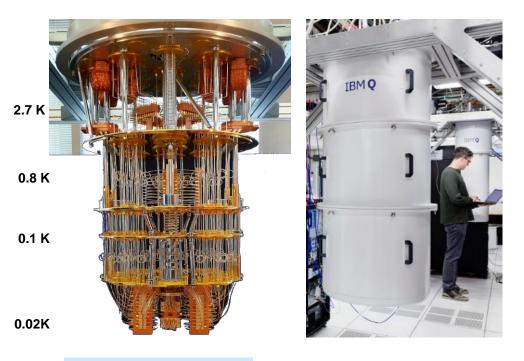
Superconducting Circuits

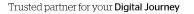



Quantum Computing Challenges (2/3): Connecting qubits

• Several possibilities for noisy qubits exists :

But


- A major engineering problem is : scaling !
- Difficulty is exponential
- State of the art (Nov. 2022 : 433 qubits IBM), no error correction
- 500-4000 uncorrected qubits expected in the coming 3 years
- But the goal is to reach one million of qubits !!


IBM Osprey 433 qubits

Quantum Computing Challenges (3/3):

Temperature near abs.zero (-273.15°C)

8

Cryostat

Amplifiers

Dilution fridae

Cabling and multiplexing

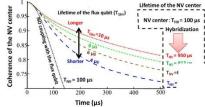
呾

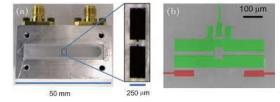
QuantrolOx **C**S Guant

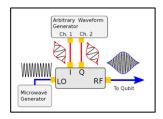
BLUEFORS Maybell

VTT

Atos

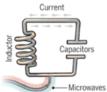

(Some) Factors contributing to the overall system Where do the « errors » come from (noisy qubits & NISQ Era)


- Qubit size
- Gate Fidelity / Errors (single qubit, multiple qubits)
- Coherence time : How long a quantum state live (#100us to ms)
- Measurement Fidelity
- Connectivity between qubits
- « Crosstalk» / Spectator errors



Trusted partner for your Digital Journey

Two-qubit exchange interaction is mediated by the bus resonator.



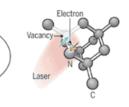
Maud Vinet, Grenoble

	Superconductor	Si spin	Trapped ions	Photons	NV centers	Neutral atoms
Size	(100µm)²	(100nm) ²	(1mm) ²	~(100µm)²	~(100µm)²	(1µm)²
Fidelity	~99.3%	~99.6%	~99.9%	50% (mesure) 98% (portes)	98% (probabilistic)	95%
Speed	100 ns	~1 µs	100 µs	1 ms	100ms	1 ms
Aanufacturing						
ıbit Variability	3%	0.1%-0.5%	0.0001%	0.5%	0.001%	0.0001%
Operation T°	50mK	10mK-1K	300K	4K	4K	300K
Connectivity	4	4	10	2	5	10
Entangled qubits	53	6	20	18	20	192

Quantum eco-system

Microwaves

boucles supraconductrices



Raytheon

qci

Sapienza **JNIVERSITÀ DI ROMA**

ODT]

Шіг

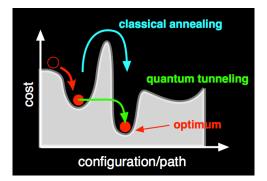
tUDelft

Laser

°I∩^{s⊤}

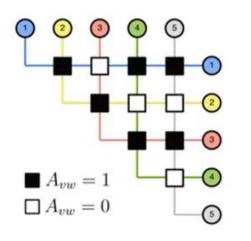
impuretés diamants

Universität Stuttgart



Types of Quantum Computers (1/2)

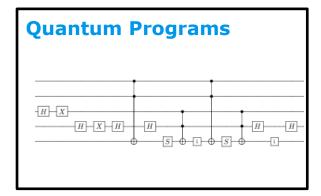
Quantum Annealers


Optimization Problems

- Machine learning
- Fault analysis
- Optimization, logistics, time scheduling
- etc...

- · Ground state of an Ising model
- Many 'noisy' qubits can be built (# 4000) today
- Quantum speedup unclear (not demonstrated)

Quantum Simulators

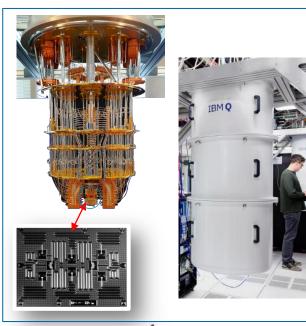

- Finding the ground state of an Ising model
- # 100/1000 qubits today

Quantum Gate based Computers

Larger Class of problems; Execution of arbitrary Quantum Algorithms

- Material discovery
- Quantum chemistry
- Optimization

- Algebraic algorithms (machine learning, cryptography,...)
- Machine Learning
 - Combinatorial optimization
 - Digital simulation of quantum systems

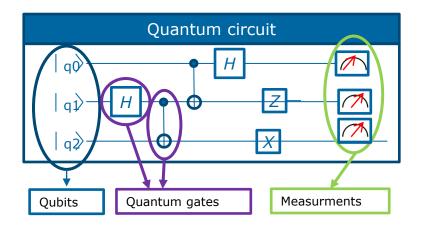

• Limited 'noisy' qubits can be built (# 10-500) today

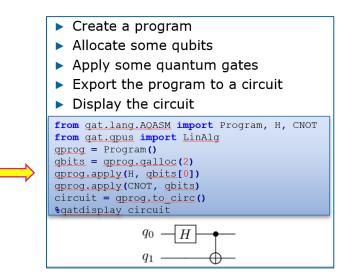
Trusted partner for your Digital Journey

Types of Quantum Computers (2/2)

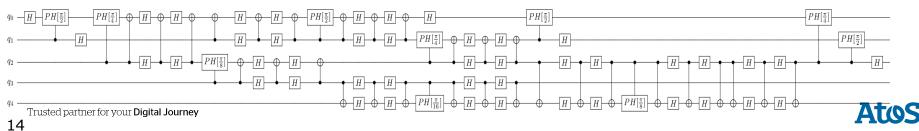
classical	computers	analog quantu	m computers	digital quantu	m computers	
quantum quantum inspired emulators		quantum	quantum	gate-based		
classical algorithms running on classical computer, inspired by quantum algorihms.	running code/models created for quantum computers	annealing	simulators	NISQ (Noisy Intermediate Scale Quantum) no error correction on a few noisy qubits	FTQC (Fault-Tolerant Quantum Computers) error correction and fault tolerance	cc) Olivier Ezratty, 2022
classical algorithms improvements	quantum algorithms debug and testing	optimization problems and quantum physics simulation		general purpose quantum computing, adds search and integer factoring		
Microsoft many software vendors like Multiverse	Atos IEM FUJITSU Google Microsoft AWS		PASQAL MTOM ColdQuanta	CUANDELA Cigetti	Ψ PsiQuantum	(cc) Oli
				XANADU		9

Existing (NISQ) solutions ...



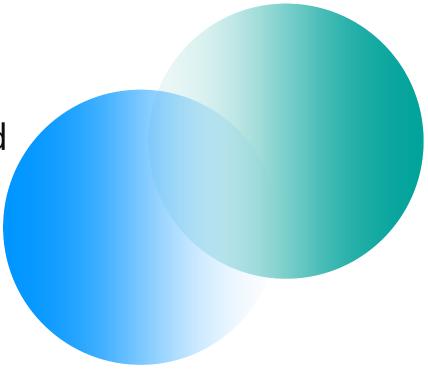


Quantum Computing – Programming in a nutshell


(Quantum gate based model)

Quantum Gates are "manipulated" through Python

Example : a QFT on 5 qubits ...

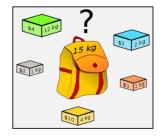


Writing your first circuit

A few notions: standard gates

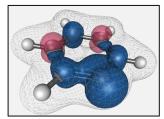
Operator	Gate(s)	Matrix	Operator	Gate(s)	Matrix
Pauli-X (X)	- x	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	Controlled Not (CNOT, CX)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	- Y -	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$		•	
Pauli-Z (Z)	- Z -	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	Controlled Z (C	Z) – Z –	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Hadamard (H)	$-\mathbf{H}$	$rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$	SWAP		$\begin{array}{c} & & \\$
Phase (S, P)	— s —	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$			F 1 0 0 0 0 0 0 0 0
$\pi/8~(T)$	- T -	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	Toffoli (CCNOT, CCX, TOFF)		$ \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix} $
abstract g	andard gates, J ates could be a matrix or a rout	tine	$XX[\theta] = \frac{1}{\sqrt{2}} \left(- \frac{1}{\sqrt{2}} \right) $	$egin{array}{cccc} 1 & 0 \ 0 & 1 \ 0 & -{ m i} \ { m i}{ m e}^{-{ m i} heta} & 0 \end{array}$	$ \begin{array}{ccc} 0 & -ie^{i\theta} \\ -i & 0 \\ 1 & 0 \\ 0 & 1 \end{array} $

03. Application domains and use cases



Why quantum computing?

Classically solved problems	
·	


Classically intractable problems

Quantum Computing addressable problems

Quantum Circuits for Applications

Quantum Simulations

Physics Chemistry Materials discovery

Linear Systems (Ax = b) 2^{n} = 2^{n}

Network analysis Differential equations Option pricing, heat transfer Classification (Machine Quantum Walks

Graph properties (network flows, electrical resistance) Search Collision finding

Known Quantum Algorithms with a Speedup

Progress in QC Algorithms Shor's

math.nist.gov/quantum/zoo

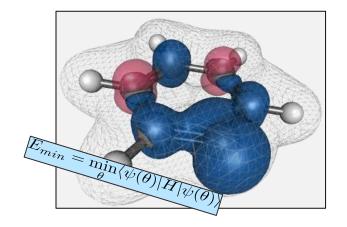
Quantum Computing applications

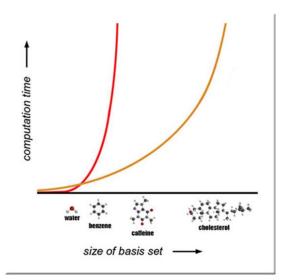
Numerous cross-industry impacts

Chemistry

One of today's most active application areas!

Goal


- Compute the exact energy of large molecules
 - This is intractable today
 - Cost: 2 qubits per orbital even without error correction!


Star algorithms

Variational Quantum Algorithms (VQE and derivatives)

Impact

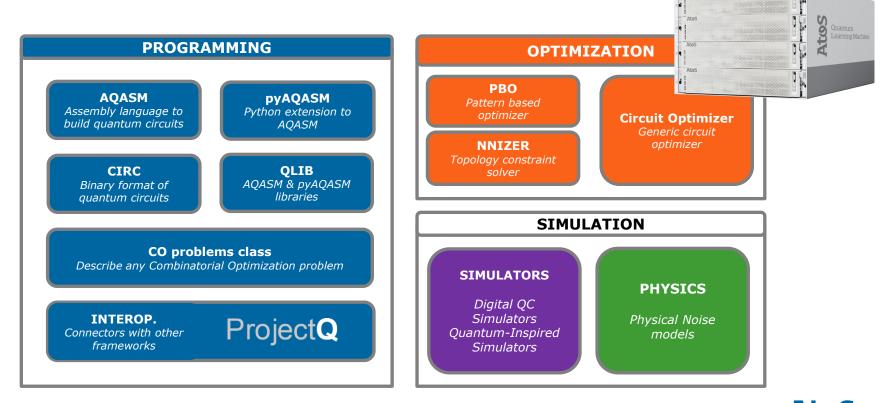
 New discovery and energy savings in synthesis for fertilizers, lubricants, ...

Atos in the Quantum Landscape

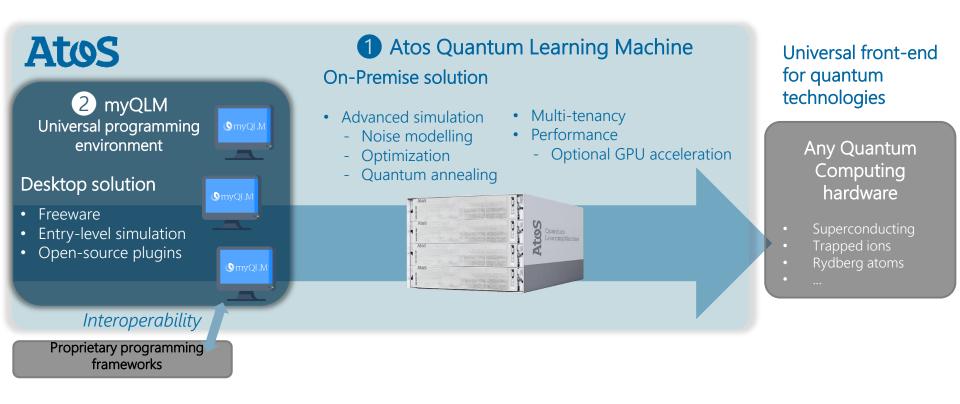
- ▶ HPC Manufacturer. #3 in the world
- Invested in Quantum Research since 2016

Atos Platform

- Built an HPC fat node (up to 48 TB memory)
- Complete quantum framework
- Embeds high performance emulators (perfect, simulation of quantum physics noise)
- Hardware agnostic hybridization
- Used in 30+ HPC Centers
- We already integrate quantum processors into supercompuetrs
 - IQM at LRZ
 - Pasqal Analog simulator at GENCI



Our solutions:


- Identify use cases in your production
- Design and test their quantum version
- Educate your teams
- Provide a hardware-agnostic high performance quantum simulator

Atos Quantum Learning Machine Programming environment and a quantum processor emulator

Atos Quantum - A universal gateway to quantum technologies

myQLM documentation : https://myqlm.github.io/

Quantum Learning Machine: jupyter notebooks tutorial

myQLM-1.5.1

The Quantum Learning Machine provides a software environment to program, compile and execute quantum pro simulators or on an actual chip whose interface has been implemented.

It comes with a python software stack named "Quantum Application Toolset" (QAT), available under the general i

Getting started

The getting started notebook provides the basic steps to write and simulate your first quantum circuit.

Tutorial notebooks: overview per theme

- Basics
- AQASM: the quantum programming language of the QLM
- Ideal (noise-less) circuit simulation
- <u>Customizing computational stack with Plugins</u>
- Interoperability

Full table of contents

- . Basics
 - EPR pair circuit creation and simulation
 - <u>Asking a simulator for an observable average</u>
 - Asking a simulator results on a subset of the gubits
- AQASM: the quantum programming language of the qlm
 - Writing a basic Quantum Program
 - PyAQASM fundamental features
 - Creating your custom gate set
 - Creating abstract gates and black-boxing routines
 - AQASM Language: text format
- Ideal (noise-less) circuit simulation
 - Demonstration of available execution options
 - <u>Analyzing the output of a run</u>

Varational Algorithms (QAOA)

- <u>A presentation of the QAOA circuit generation routines</u>
- Adaptative plugins and variational optimizers
- Fun and interactive plugins for variational optimization
- Binding with Scipy optimizers

Customizing computational stack with Plugins

- Splitting observables using the ObservableSplitter
- Inlining circuit inside the execution stack via the CircuitInliner
- Writing your own plugin
- Example: emulating constrained connectivity

Interoperability

- Qiskit: interoperability
- Qiskit: connect to IBMQ backend
- <u>Pyquil (deprecated for python 3.6)</u>
- Cirq
- Projectq
- Opengasm
- Annealing on myQLM
 - Basic example with Ising Antiferromagnet
 - Unconstrained Graph Problems
 - Max Cut
 - Graph Partitioning
 - Constrained Graph Problems
 - K-Clique
 - <u>Vertex Cover</u>
 - Other NP Problems
 - Number Partitioning

Atos Worldwide Quantum Community

From research to productive applications

26

Calcul Scientifique et Modélisation Orléans Tours

Merci et au plaisir de poursuivre ces échanges ©

Olivier HESS Quantum Computing France M+ 33 6 76757902 olivier.hess@atos.net

Atos, the Atos logo, Atos Syntel are registered trademarks of the Atos group. February 2021. © 2021 Atos, Confidential information owned by Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Atos.

